词条 | 信号抽样 |
释义 | xinhɑo chouyɑng 信号抽样(卷名:电工) sampling of signals 在某些选定的时刻抽取连续时间信号在各该时刻的值。数字计算机所处理的信号必须是离散时间信号。在涉及连续时间信号时,就必须先以适当的频度从中抽取其在各时刻的数值,形成相应的离散时间信号,然后进行处理。 连续时间信号的抽样 抽样的示意如图1所示。 ![]() ![]() ![]() ![]() 抽样保持 由于连续时间信号的抽样值经过量化、编码而变换成数字量需要一定的时间,所以信号抽样后要保持一段时间。抽样与保持常常结合在一起,称为信号的抽样与保持。抽样和保持的具体方法如图2所示。 ![]() 抽样定理 一信号在时域中用一时间函数X(t)表示,在频域中用其频率函数X(jΩ)表示。X(t)与X(jΩ)为一个傅里叶变换对。C.E.香农等人在1948年提出的抽样定理说明了X(t)的抽样序列X(nT)与X(t)的关系。定理揭示:设X(t)是一频带宽度有限的信号,即当|Ω|>Ωm时X(jΩ)=0,则由以大于2Ωm的抽样率ΩS(等于2π/T)进行抽样所得的抽样序列X(nT)可以完全确定X(t)。fS=2Ωm的抽样频率也称为奈奎斯特频率。 抽样定理的意义在于它确定了抽样率必须高于2Ωm才能从抽样序列恢复原来的连续信号。由抽样信号的傅里叶变换知道,抽样信号的傅里叶变换在频域中是以ΩS为周期的连续周期函数。当抽样间隔增大,ΩS降低到不满足大于2Ωm的条件时,则抽样信号XS(t)的傅里叶变换的幅度频谱|X(ejw)|成为图3中粗黑线所示的形状。 ![]() ![]() ![]() 把频域中的连续频率函数X(jΩ)在频域中抽样得到的离散频谱序列XS(jΩ)称为频域采样。 对时限信号X(t)的傅里叶变换X(jΩ)以抽样间隔∮在频域中进行抽样,如选择抽样间隔∮,使 ![]() |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。