词条 | 大系统的分解和协调 |
释义 | daxitong de fenjie he xietiao 大系统的分解和协调(卷名:自动控制与系统工程) decomposition and coordination of large scale systems 将大系统分解成若干相对独立的子系统并用协调器来处理各子系统间的关联作用的一种递阶控制方法。通常将大系统分解成若干个相对独立而又相互关联的子系统作为第一级(下级系统),分别求解每个子系统的极值问题,并在第二次(上级系统)设置一个协调机构(协调器)来处理各子系统间的关联作用。通过上下级之间反复交换信息,在求得各子系统极值解的同时,获得整个大系统的最优解。 在递阶系统中,分解和协调是密切相关的两个基本过程。在分解过程中,可以按三种观点来划分子系统:①基于实际系统结构的分解;②基于计算量最小的分解;③基于决策问题数学结构的分解。但无论是哪一种分解,都应使每个子系统在协调器提供协调变量值的情况下,独立地求解各自的极值问题。为此,一方面将大系统的总体目标以适当的形式分配给每个子系统,另一方面在保持整体最优解不变的前提下,对每个子系统中的关联项作某些调整。 协调过程是一个对总体目标寻优的过程。上级系统凭借它所能支配的协调变量去命令下级系统,使下级各子系统的动作协调起来,以便在求得各下级子系统的局部极值解的同时,获得大系统的整体最优解。既然协调器的任务在于从总体目标出发,沟通并处理下级各子系统间的关联,那么就有一个依据何种原理和采用什么策略有效地调配下级系统的问题。归根到底是选择哪个变量作为协调变量的问题。为使协调能达到预期的目的,还要引入可协调性的概念。一个系统按某个原理是可协调的,是指该原理为可行的,并存在一个协调变量,使相应的协调条件得到满足。 对于线性二次型问题,可在线性状态方程和线性关联方程的约束下求二次型目标函数J的极小解。根据拉格朗日乘子理论,这一问题可化成无约束极值问题。即求拉格朗日函数 ![]() ![]() ![]() 目标协调法 选择关联拉格朗日乘子λ作为协调变量来求解下列极值问题的两级递阶算法: ![]() 模型协调法 选择输出变量 y作为协调变量来求下列极值问题的一种两级递阶算法: ![]() ![]() 混合法 这是选择关联拉格朗日乘子λ和关联输入变量z 作为协调变量来求下列极值问题的一种两级递阶算法: ![]() ![]() ![]() ![]() 参考书目 M.D.Mesarovic et al., Theory of Hierarchical Multilevel Systems, Academic Press, New York, 1970. M.G.辛,A.铁脱里编著,周斌等译:《大系统的最优化及控制》,机械工业出版社,北京,1983。(M.G.Singhand A.Titli, Systems:Decomposition,Optimization and Control, Pergamon Press, Oxford,1978.) |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。