词条 | 惯量张量 |
释义 | guanliang zhangliang 惯量张量(卷名:物理学) inertial tensor 刚体对于一点的转动惯性的量度。若Oxyz是固连在刚体上的一直角坐标系(图1),l轴是通过坐标原点O的任意轴,它和各坐标轴Ox、Oy、Oz的夹角分别为α、β、γ;设刚体中任一质点P的质量为mi,它的坐标为(xi,yi,zi),则刚体对轴l的转动惯量为 ![]() ![]() ![]() ![]() ![]() 刚体对过坐标原点O 的任意轴l的转动惯量I由六个量Ix、Iy、Iz、Ixy、Iyz、Izx及轴l对坐标轴Ox、Oy、Oz的方向余弦决定。I是由刚体本身的质量、质量分布及轴l的方位来决定的,它是一个具有力学性质的量,它的值不因确定物体位置所选取的坐标系的不同而改变。对称的惯量矩阵: ![]() ![]() 适当选择坐标系Oxyz的方位,可使刚体的两个惯性积同时为零,例如, ![]() 若Iс尣′、Iсу′、Iсz′为刚体对以中心惯量主轴为坐标轴Cx′、Cy′、Cz′的转动惯量(图2),则通过O点的任意轴l的转动惯量为 ![]() ![]() 一般说来,确定惯量主轴的方向是困难的。但如果刚体的质量分布具有对称轴,则该对称轴便是惯量主轴,也是中心惯量主轴。若刚体的质量分布具有对称面,垂直于这对称面的任一直线是对于这直线和对称面的交点的一个惯量主轴。如这交点和质心重合,则这轴是一个中心惯量主轴。均匀球体的任意三个互相正交的直径是球体的三个中心惯量主轴。均匀椭球通过质心的三个几何对称轴是椭球的三个中心惯量主轴。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。