词条 | 伪随机数 |
释义 | weisuijishu 伪随机数(卷名:数学) pseudo-random numbers 在数字计算机上用数学方法产生的、统计意义下具有在区间(0,1)上均匀总体简单子样性质的数值序列{rn|n=1,2,…;0≤rn≤1}。 用蒙特卡罗法模拟求解一个实际问题,要用到各种不同分布的随机变量、随机向量和随机过程 η的抽样序列{ηn|n=1,2,…},称它们为随机数。如常用的二项分布随机数、均匀分布随机数、二维正态分布随机数等,其中最基本、最重要的是区间(0,1)上均匀分布的随机数。因此,如何在计算机上产生伪随机数备受重视。 在一台b)进制(如二进制或十进制)、尾数字长为k位的计算机上,不考虑符号和阶码,可以表示bk个不同的数,即0,1,2,…,bk-1。在数学计算机上产生伪随机数,就是选取m个整数x1,x2,…,xm作为初值和一个适于递推计算的数学公式 ![]() ![]() ![]() 选用不同的递推计算公式 ![]() ![]() ![]() ![]() ![]() 在一台尾数字长为k位的二进制计算机上,取模M=2k,乘同余法的递推计算同余式为 ![]() ![]() ![]() ![]() 对产生的伪随机数,要经过一定的理论分析和各种统计检验,以检查得到的序列是否具有在区间(0,1)上均匀总体简单子样所应具有的各种统计性质,如分布的均匀性、取值的随机性、前后的独立性和分段序列统计性质的一致性等。进行上述统计性质检验的方法很多,常用的有参数检验、均匀性检验、独立性检验、连检验和各种不同的组合规律性检验等。 有了伪随机数{rn},利用各种不同的抽样算法,如直接抽样、变换抽样、舍选抽样、复合抽样等,就可以产生模拟计算中需要的各种不同分布的随机数。 设随机变量η的分布函数F(x)连续,逆函数F -1(y)存在,则R=F(η)为区间(0,1)上均匀分布的随机变量。利用这一原理,从随机数{rn}出发,就可以直接得到η的抽样序列 ![]() ![]() ![]() ![]() 在概率统计的理论研究和实际应用中,经常遇到具有密度函数 ![]() ![]() 上述抽样算法,要用到对数、开方、正弦和余弦等算法,速度较慢。在计算机上,灵活多变、计算量省的舍选抽样和复合抽样更经常的用来产生所要的各种不同分布的随机数。以随机余弦 ![]() ![]() ![]() ![]() ![]() 参考书目 中国科学院计算中心概率统计组编著: 《概率统计计算》,科学出版社,北京,1979。 徐钟济编著:《蒙特卡罗方法》,上海科学技术出版社,上海,1985。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。