请输入您要查询的百科知识:

 

词条 电子顺磁共振
释义 dianzi shunci gongzhen
电子顺磁共振(卷名:生物学)
electron paramagnetic resonance,EPR
  由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。对自由基而言,轨道磁矩几乎不起作用,总磁矩的绝大部分(99%以上)的贡献来自电子自旋,所以电子顺磁共振亦称“电子自旋共振”(ESR)。
  EPR现象首先是由苏联物理学家 Е.К.扎沃伊斯基于1944年从MnCl2、CuCl2等顺磁性盐类发现的。物理学家最初用这种技术研究某些复杂原子的电子结构、晶体结构、偶极矩及分子结构等问题。以后化学家根据 EPR测量结果,阐明了复杂的有机化合物中的化学键和电子密度分布以及与反应机理有关的许多问题。美国的B.康芒纳等人于1954年首次将EPR技术引入生物学的领域之中,他们在一些植物与动物材料中观察到有自由基存在。60年代以来,由于仪器不断改进和技术不断创新,EPR技术至今已在物理学、半导体、有机化学、络合物化学、辐射化学、化工、海洋化学、催化剂、生物学、生物化学、医学、环境科学、地质探矿等许多领域内得到广泛的应用。
  基本原理  电子是具有一定质量和带负电荷的一种基本粒子,它能进行两种运动;一种是在围绕原子核的轨道上运动,另一种是对通过其中心的轴所作的自旋。由于电子的运动产生力矩,在运动中产生电流和磁矩。在外加恒磁场H中,电子磁矩的作用如同细小的磁棒或磁针,由于电子的自旋量子数为1/2,故电子在外磁场中只有两种取向:一与H 平行,对应于低能级,能量为;一与H 逆平行,对应于高能级,能量为,两能极之间的能量差为
  若在垂直于H的方向,加上频率为ν的电磁波使恰能满足Hν这一条件时,低能级的电子即吸收电磁波能量而跃迁到高能级, 此即所谓 EPR现象。在上述产生EPR现象的基本条件中,h为普朗克常数,g为波谱分裂因子(简称g因子或g值),β为电子磁矩的自然单位,称玻尔磁子。以自由电子的g值=2.00232,β=9.27410×10-21尔格/高斯,h=6.62620×10-27尔格·秒,代入上式,可得电磁波频率与共振磁场之间的关系式:
     ν(兆赫)=2.8025H(高斯)
  主要检测对象  可分为两大类:
  ① 在分子轨道中出现不配对电子 (或称单电子)的物质。如自由基(含有一个单电子的分子)、双基及多基(含有两个及两个以上单电子的分子)、三重态分子(在分子轨道中亦具有两个单电子,但它们相距很近,彼此间有很强的磁的相互作用,与双基不同)等。
  ② 在原子轨道中出现单电子的物质,如碱金属的原子、过渡金属离子(包括铁族、钯族、铂族离子,它们依次具有未充满的3d,4d,5d壳层)、稀土金属离子(具有未充满的4f壳层)等。
  EPR波谱仪  绝大多数仪器工作于微波区,通常采用固定微波频率ν,而改变磁场强度H来达到共振条件。但实际上ν若太低,则所用波导管尺寸要加大,变得笨重,加工不便,成本贵;而ν又不能太高,否则H必须相应提高,这时电磁铁中的导线匝数要加多,导线加粗,磁铁要加大,亦使加工困难。常用的微波频率有下列3种情况(见表)。其中尤以X波带最为常用。


  波谱仪由4个部件组成:①微波发生与传导系统;②谐振腔系统;③电磁铁系统;④调制和检测系统。
  EPR波谱的主要特性  由于通常采用高频调场以提高仪器灵敏度,记录仪上记出的不是微波吸收曲线(由吸收系数X″对磁场强度H作图)本身,而是它对H的一次微分曲线。后者的两个极值对应于吸收曲线上斜率最大的两点,而它与基线的交点对应于吸收曲线的顶点。
  g值  从共振条件hν=看来,hβ为常数,在微波频率固定后,ν亦为常数,余下的gH二者成反比关系,因此g足以表明共振磁场的位置。g值在本质上反映出一种物质分子内局部磁场的特征,这种局部磁场主要来自轨道磁矩。自旋运动与轨道运动的偶合作用越强,则g值对ge(自由电子的g值)的增值越大,因此g值能提供分子结构的信息。对于只含C、H、N和O的自由基,g值非常接近ge,其增值只有千分之几。
  当单电子定域在硫原子时,g值为2.02-2.06。多数过渡金属离子及其化合物的g值就远离ge,原因就是它们原子中轨道磁矩的贡献很大。例如在一种Fe3+络合物中,g值高达9.7。
  线宽  通常用一次微分曲线上两极值之间的距离表示(以高斯为单位),称“峰对峰宽度”,记作△Hpp。线宽可作为对电子自旋与其环境所起磁的相互作用的一种检测,理论上的线宽应为无限小,但实际上由于多种原因它被大大的增宽了。
  超精细结构  如在单电子附近存在具有磁性的原子核,通过二者自旋磁矩的相互作用,使单一的共振吸收谱线分裂成许多较狭的谱线,它们被称为波谱的超精细结构。设n为磁性核的个数,I为它的核自旋量子数,原来的单峰波谱便分裂成(2nI+1)条谱线,相对强度服从于一定规律。在化学和生物学中最常见的磁性核为1H及14N,它们的I各为及1。如有 n1H原子存在,即得(n+1)条谱线,相对强度服从于(1+x)n中的二项式分配系数。如有n14N原子存在,即得(2n+1)条谱线,相对强度服从于(1+x+x2)n中的3项式分配系数。超精细结构对于自由基的鉴定具有重要价值。
  吸收曲线下所包的面积  可从一次微分曲线进行两次积分算出,与含已知数的单电子的标准样品作比较,可测出试样中单电子的含量,即自旋浓度。
  在生物学中的应用  研究生物组织中的自由基  在冻干的动物组织和植物组织内均检测出自由基,而在代谢过程活跃的组织(如绿叶、肝、肾)样品内,自由基含量很高。又在蚁、果蝇、活鼠鼠尾、腐黑物、植物树脂和各种动物与植物来源的黑素内均测知有自由基存在。
  研究酶促反应中的自由基  直接证实了L.米夏埃利斯关于生物底物的氧化有阶段性的假说(见生物氧化),已知有半醌型自由基作为中间产物生成,自由基浓度随着电子转移速率或酶活性而增大。在某些情况下,可利用超精细结构来鉴定自由基,并进而提供关于酶催化机理的信息和探测有关酶的活性部位的结构。
  研究光合原初反应  证明在叶绿体、活的水藻和能进行光合作用的细菌中有光照所引起的自由基生成,它们全部参与光合电子传递链。这有助于阐明太阳能转换成化学能的本质。
  研究辐射原初过程  对于生物物质受高能辐射作用后所产生的自由基作定性与定量的检测,已提供了辐射损伤程度及损伤部位的信息。还从较深入的研究得出涉及辐射效应的原初机理、氧效应、能量转移、自旋转移、生物物质的辐射敏感性、辐射防护和辐射敏化的许多极为重要的结果。
  研究癌变过程中的自由基  已观察到某些癌组织内的自由基含量低于正常组织。在用多种致癌物喂大鼠后,肝内可检出一个特征信号,在癌的诊断中可能有重要价值。还证明了由致癌物在组织中形成自由基的现象。
  研究生物组织中的顺磁金属离子(包括过渡族金属 离子)  对一些动物组织、植物材料和微生物都能见到铜(Ⅱ)、锰(Ⅱ)或铁的EPR信号。已用EPR技术证实了一些含顺磁性金属的酶的活性与这些金属的原子价态直接有关,这些金属离子可能参与底物与酶的结合,例如黄嘌呤氧化酶中的钼、琥珀酸脱氢酶中的铁、血浆铜蓝蛋白中的铜。
  对血红蛋白、肌红蛋白及其数种衍生物的单晶,用EPR法测出的血红素平面对外界晶轴的取向,比用别的方法所得结果更准确,且提供了有关分子中央铁原子的化学键的信息,并证明血红蛋白分子内4个血红素平面并不相互平行。
  许多铁硫蛋白的发现,多半是由于EPR测定结果, 在其活性部位的鉴定和了解结构与功能的关系方面,EPR亦作出了主要贡献。
  自旋标记法  由美国的H.M.麦康奈尔于1965年首创,系指将一种稳定的自由基(最常用者为氮氧自由基)结合到单个分子或处于较复杂系统内的分子上的特定部位,而从 EPR波谱取得有关标记物环境的信息。在进行自旋标记时,应注意到尽量保持专一性和减少对天然系统的生物特性和分子特性引起的扰动。自旋标记物有 4个优点:①对溶剂的极性敏感,因此得以探究标记物周围环境的疏水性或亲水性;②对分子转动速率极为敏感,因此能计测标记物的环境内所容许的活动程度,特别是计测由某种生化过程引起生物分子构象的改变;③EPR波谱较简单,易于分析,由14N引起的三峰波谱能提供许多有价值的信息;④不存在来自抗磁性环境的干扰信号。
  自旋标记物可通过共价键或通过象酶与辅酶、酶与底物、抗体与半抗原,以及膜与甾体的相互作用中所包含的那些非共价的引力被连接到目的物。自旋标记法现已被广泛应用于研究生物高分子的构象、酶的活性部位的结构、脂质体和生物膜的结构及应用于免疫分析。
  参考书目
 向仁生:《顺磁共振测量和应用的基本原理》,科学出版社,北京,1965。
 裘祖文:《电子自旋共振波谱》,科学出版社,北京, 1980。
 J.E.Wertz,J.R. Bolton,Electron S pin Resonance,Elementary Theory and Practical Applications,McGrawHill Book Co., New York,1972.
 A. Pryor,Free Radicals in Biology,Vol. 1~6,Academic Press, New York,1976~1984.
随便看

 

百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Newdu.com All Rights Reserved
更新时间:2025/1/29 7:24:08