词条 | 梁 |
释义 | liang 梁(卷名:力学) beam 承受垂直于轴线的横向载荷的杆件。它是工程结构中重要的承力构件,如房梁、轮船的龙骨、飞机机翼的大梁和起重机的大梁。梁的种类繁多,按照轴线形状,可分为直梁和曲梁;按照支持的形式,可分为悬臂梁、简支梁、连续梁、弹性基础梁等(图1)。梁的支反力可由静力平衡条件确定的,称为静定梁,(见静定结构),如悬臂梁和简支梁;不能由静力平衡条件确定的,称为静不定梁(见静不定结构),如连续梁和弹性基础梁。 ![]() 在横向载荷作用下,梁轴线的曲率会发生变化,直梁的轴线由直变曲,曲梁轴线的曲率增大或减小。这类变形称为弯曲变形,变形后的轴线称为挠曲线。 早在17世纪,伽利略就研究过梁的弯曲问题。在随后的一百多年中,经E.马略特、雅各布第一.伯努利(见伯努利家族)、A.帕伦、C.-A.de库仑等科学家的继续研究,基本上形成以平截面假设为基础的弯曲理论。这一近似理论满足了工程上的要求并得到广泛的应用。 弯曲形式 若梁的横截面有一对称轴,则梁有一纵向对称面。梁的轴线即为纵向对称面内的直线(直梁情形)或曲线(曲梁情形)。若作用于梁上的载荷都在这个纵向对称面内,则挠曲线也是这一平面内的曲线,这类弯曲称为平面弯曲,是工程中最常见的弯曲形式。若梁的横截面无对称轴,则梁也无纵向对称面,但只要载荷通过弯心连线,且平行于截面的形心主惯性轴(见截面的几何性质),梁的变形仍为平面弯曲。在横截面无对称轴的情况下,如果载荷通过弯心但不平行于截面的形心主惯性轴,则梁在两个形心主惯性平面内同时产生弯曲变形,变形后的挠曲线不再位于载荷作用的纵向平面内,这种弯曲称为非对称弯曲。若梁的横截面虽有对称轴,而载荷通过截面形心而不与对称轴重合,梁也会在两个形心主惯性平面内同时弯曲,变形后的挠曲线也不在载荷作用的纵向平面内,这种弯曲有时称为斜弯曲。 剪力图和弯矩图 对横向载荷作用下的梁(图2a), ![]() ![]() 弯曲正应力 每一梁截面上的弯矩都由截面上的弯曲正应力所平衡。由梁截面上的弯矩可进一步求出截面上正应力的分布规律。根据平截面假设,梁内必然存在一个变形前后纤维长度不改变的中性层。它把梁分为两部分,一部分受拉,另一部分受压。中性层和横截面的交线称为中性轴(图4)。 ![]() ![]() ![]() ![]() 上述直梁弯曲理论,在纯弯曲的情况下是精确的。如果把它应用于横力弯曲,所得结果是近似的,但对比较细长的梁其精确度已可满足工和要求。对轴线曲率半径远大于横截面高度的曲梁,仍然可以使用式(2)。但如果轴线曲率半径和横截面高度的量级相同(如吊钩),则正应力沿截面高度的变化规律为双曲线(图6),而不再象直梁那样按直线规律分布。 ![]() 弯曲剪应力 在横力弯曲下,梁截面上除了有与弯矩对应的正应力外,还有与剪力对应的弯曲剪应力。剪应力的分布与梁的几何形状有关,它在变截面梁和等截面梁中的分布也有很大差异。用材料力学的方法,可以计算截面呈某些特殊形状的杆件的剪应力。例如,在狭长矩形截面梁中,剪应力沿截面的高度按抛物线规律分布(图7)。图中左边的箭头表示剪应力的方向,右边的阴影表示剪力的大小。在中性轴上,剪应力最大(τ嚝),而在横截面上下边缘,剪应力等于零。 ![]() 在梁的弯曲问题中,弯曲正应力是主要的,弯曲剪应力是次要的,有时可忽略。但对于一些特殊情况的梁,如跨度较短的梁、薄腹板梁、夹层梁等,剪应力不可忽略。 弯曲变形 在如图8所示的坐标系中,以v表示直梁平面弯曲挠曲线上一点的纵坐标,则挠曲线的方程式可以写作: ![]() ![]() ![]() ![]() ![]() ![]() 以上的讨论,都假设材料是线弹性的,服从胡克定律。若应力超出弹性范围,材料中就会出现塑性变形。在这种情况下,平截面假设仍然有效,但应力-应变关系不再是线性的,且在加载和卸载过程中遵循不同的规律。在考虑塑性变形的基础上研究梁的弹塑性弯曲问题,会得出一些不同的结果(见塑性力学)。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。