词条 | 笛卡儿,R. |
释义 | Dikɑ’er 笛卡儿,R.(卷名:数学) René Descartes (1596~1650) ![]() 笛卡儿生活在资产阶级与封建领主、科学与神学进行激烈斗争的时代。早在读书时,他就对统治欧洲思想界的经院哲学表示怀疑和不满。多年的游历,同社会各阶层人士的交往,多方面的科学研究以及不断地自我反省和思考,使他坚信必须抛弃经院哲学,探求正确的思想方法,创立为实践服务的哲学,“才能成为自然的主人和统治者”。他认为数学是其他一切科学的理想和模型,提出了以数学为基础的、以演绎法为核心的方法论,对后世的哲学、数学和自然科学的发展起了巨大作用。他一直为捍卫他的学说同教会和其他反动势力进行斗争。 ![]() 《几何学》确定了笛卡儿在数学史上的地位。文艺复兴使欧洲学者继承了古希腊的几何学,也接受了东方传入的代数学。科学技术的发展使得用数学方法描述运动成为人们关心的中心问题。笛卡儿分析了几何学与代数学的优缺点,表示要去“寻求另外一种包含这两门科学的好处而没有它们的缺点的方法”。在《几何学》卷一中,笛卡儿把几何问题化成代数问题,提出了几何问题的统一作图法。为此,他引入了单位线段以及线段的加、减、乘、除、开方等概念,从而把线段与数量联系起来,通过线段之间的关系,“找出两种方式表达同一个量,这将构成一个方程”,然后根据方程的解所表示的线段间的关系作图。在卷二中,笛卡儿用这种新方法解决帕普斯问题时,在平面上以一条直线为基线,为它规定一个起点,又选定与之相交的另一条直线,它们分别相当于x 轴、原点、y 轴,构成一个斜坐标系。那么该平面上任一点的位置都可以用(x,y)惟一地确定。帕普斯问题化成一个含两个未知数的二次不定方程。笛卡儿指出,方程的次数与坐标系的选择无关,因此可以根据方程的次数将曲线分类。《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生。恩格斯把它称为数学的转折点。此后,人类进入变量数学阶段。在卷三中,笛卡儿指出,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则:方程正根的最多个数等于其系数变号的次数;其负根的最多个数(他称为假根)等于符号不变的次数。笛卡儿还改进了F.韦达创造的符号系统,用α,b,с,…表示已知量,用x,y,z,…表示未知量。 笛卡儿在物理学、生理学和天文学等方面也有许多创见。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。