词条 | 蠕变 |
释义 | rubian 蠕变(卷名:力学) creep 由应力引起的应变随时间变化的现象。许多材料(如金属、塑料、岩石和冰)在一定条件下都表现出蠕变的性质。由于蠕变,材料在某瞬时的应力状态,一般不仅与该瞬时的变形有关,而且与该瞬时以前的变形过程有关。许多工程问题都涉及蠕变。在维持恒定变形的材料中,应力会随时间的增长而减小,这种现象为应力松弛,它可理解为一种广义的蠕变。 图1表示在三个不同的恒定应力σ1<σ2<σ3作用下,材料的应变ε随时间t 变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段,如图2所示:Ⅰ为非定常蠕变阶段,应变率随时间的增加而减小;Ⅱ为定常蠕变阶段,应变率保持常值;在最末阶段Ⅲ,应变率随时间而增大,最后材料在 ![]() ![]() ![]() 目前,还没有一个适用于一切材料的统一蠕变理论。对金属材料目前主要有老化理论、强化理论和蠕变后效理论。如以p=ε-ε0表示蠕变的应变(ε0为t=0时的应变),妛表示蠕变应变率,则对于单向受力情形,这些理论的不同在于:老化理论认为,在恒应力的条件下,时间t以显函数出现于蠕变应变的表达式之中,即 p=f(σ,t)。强化理论认为,蠕变应变率主要取决于蠕变应变,即有妛=g(σ,p)。蠕变后效理论则认为,蠕变现象实质上是塑性后效,去除应力之后,后效应变是不可恢复的,若以塑性变形规律σ=嗞(ε)为基础,可将嗞(ε)分解为两部分: ![]() 蠕变的微观机制对于不同的材料是不同的。引起多晶体材料蠕变的原因据认为是原子晶间位错引起的点阵的滑移以及晶间扩散等。 材料在恒拉应力作用下,经过一定时间 ![]() ![]() 目前,蠕变理论、蠕变断裂的微观机制以及蠕变和工程构件其他失效形式的相互作用的研究仍不成熟,有待今后继续深入。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。