词条 | 纳维-斯托克斯方程 |
释义 | nawei-situokesi fangcheng 纳维-斯托克斯方程(卷名:力学) Navier-Stokes equation 描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。此方程是法国科学家C.-L.-M.-H.纳维于1821年和英国物理学家G.G.斯托克斯于1845年分别建立的,故名。它的矢量形式为: ![]() ![]() 粘性可压缩流体运动方程的普遍形式为: ![]() ![]() ![]() ![]() ![]() ![]() ![]() 从理论上讲,有了包括 N-S方程在内的基本方程组,再加上一定的初始条件和边界条件,就可以确定流体的流动。但是,由于N-S方程比欧拉方程多了一个二阶导数项μΔv,因此,除在一些特定条件下,很难求出方程的精确解。可求得精确解的最简单情况是平行流动。这方面有代表性的流动是圆管内的哈根-泊肃叶流动(见管流)和两平行平板间的库埃特流动(见牛顿流体)。 在许多情况下,不用解出N-S方程,只要对N-S方程各项作量级分析,就可以确定解的特性,或获得方程的近似解。对于雷诺数Re《1的情况,方程左端的加速度项与粘性项相比可忽略,从而可求得斯托克斯流动的近似解。R.A.密立根根据这个解给出了一个最有名的应用,即空气中细小球状油滴的缓慢流动。对于雷诺数Re》1的情况,粘性项与加速度项相比可忽略,这时粘性效应仅局限于物体表面附近的边界层内,而在边界层之外,流体的行为实质上同无粘性流体一样,所以其流场可用欧拉方程求解。 把 N-S方程沿流线积分可得到粘性流体的伯努利方程: ![]() 参考书目 L.普朗特著,郭永怀、陆士嘉译:《流体力学概论》,科学出版社,北京,1981。(L.Plandtl,etal., Führer Durch die Str-mungslehre,Friedr.Vieweg und Sohn,Braunschweig,1969.) |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。