词条 | 线性判别函数 |
释义 | xianxing panbie hanshu 线性判别函数(卷名:自动控制与系统工程) linear discriminant function 统计模式识别中用以对模式进行分类的一种最简单的判别函数。在特征空间中,通过学习,不同的类别可以得到不同的判别函数,比较不同类别的判别函数值大小,就可以进行分类。统计模式识别方法把特征空间划分为决策区对模式进行分类。一个模式类同一个或几个决策区相对应。每个决策区对应一个判别函数。对于特征空间中的每个特征向量x,可以计算相应于各个决策区的判别函数gi(x),i=1,2,…,c。用判别函数进行分类的方法就是:若对所有的i均有gi(x)≥gi(x),则把x分为第j类,记成r(x)=j。对于线性判别函数,gi(x)的函数形式为 gi(x)=Wi0+Wi1x1+Wi2x2+…+Widxd式中x1,x2,…,xd是输入模式特征向量的各个分量,Wi0,Wi1,…,Wid组成与第i类对应的权向量,它们的大小反映与它们对应的特征向量的各个分量在确定第 i类判别函数值的重要程度。 特征空间中分别与第i类、第j类相对应的区域之间的决策边界形式为 ![]() ![]() ![]() 当用贝叶斯决策理论进行分类器设计时,在一定的假设下也可以得到线性判别函数,这无论对于线性可分或线性不可分的情况都是适用的。在问题比较复杂的情况下可以用多段线性判别函数(见近邻法分类、最小距离分类)或多项式判别函数对模式进行分类。一个二阶的多项式判别函数可以表示为 ![]() 参考书目 R.O.Duda and P.E.Hart,Pattern Classificationand Scene Analysis,John Wiley & Sons,New York,1973. |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。