词条 | 蒙特卡罗法 |
释义 | Mengtekɑluofa 蒙特卡罗法(卷名:数学) Monte Carlo method 以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解,故又称统计模拟法或统计试验法。 蒙特卡罗是摩纳哥的一个城市,以赌博闻名于世界。蒙特卡罗法借用这一城市的名称是为了象征性地表明该方法的概率统计的特点。 蒙特卡罗法作为一种计算方法,是由S.M.乌拉姆和J.冯·诺伊曼在20世纪40年代中叶为研制核武器的需要而首先提出来的。在此之前,该方法的基本思想实际上早已被统计学家所采用了。例如,早在17世纪,人们就知道了依频数来决定概率的方法。 20世纪40年代中叶,出现了电子计算机,使得用数学方法模拟大量的试验成为可能。另外,随着科学技术的不断发展,出现了越来越多的复杂而困难的问题,用通常的解析方法或数值方法都很难加以解决。蒙特卡罗法就是在这些情况下,作为一种可行的而且是不可缺少的计算方法被提出和迅速发展起来的。 基本原理 考虑一个射击运动员的射击成绩 G。令x表示弹着点到靶心的距离,g(x)表示得分,而ƒ(x)表示该运动员的弹着点的分布密度,则 ![]() ![]() 假设 x不是一维空间的点,而是一个S 维空间的点(x1,x2,…,xs),则上述积分变为 ![]() ![]() 蒙特卡罗法解题的一般过程是,首先构成一个概率空间;然后在该概率空间中确定一个随机变量g(x),其数学期望 ![]() ![]() 收敛性、误差和费用 蒙特卡罗法的近似估计弿N依概率1收敛于G的充分必要条件是随机变量g(x)满足 ![]() ![]() ![]() ![]() 根据中心极限定理,只要随机变量g(x)具有有限的异于零的方差σ2,当N 足够大时便有蒙特卡罗法的误差公式如下: ![]() ![]() 提高效率的方法 降低方差技巧 降低方差是提高蒙特卡罗法效率的重要途径之一。考虑二重积分 ![]() ① 统计估计技巧 用ƒ(x) 和ƒx(y)分别表示分布ƒ(x,y)的边缘分布和条件分布。计算Eg的统计估计技巧是用y的统计估计量 ![]() ② 重要抽样技巧 引入任意分布密度函数ƒ*(x,y),则 ![]() ③ 相关抽样技巧 考虑一个新的、积分值已知的二重积分 ![]() ![]() ![]() ![]() 降低方差的技巧还有对偶变数技巧、系统抽样技巧和分层抽样技巧等。对偶变数技巧的一般原理是,除了原确定的随机变量外,寻找另一个(或多个)具有相同数学期望的随机变量,使得它们之间尽量是对偶负相关的,然后用它们的线性组合作为蒙特卡罗法最终所确定的随机变量。系统抽样技巧的一般原理是,对问题中所出现的某些随机变量按相应分布所确定的比例进行抽样,而不是进行随机抽样。分层抽样技巧的一般原理是,对问题中所出现的某些随机变量进行分层,尽量使所确定的随机变量在各层中相对平稳,各层间的抽样按相应分布所确定的比例进行。 其他途径 为了提高蒙特卡罗法的效率,除了简单地降低方差外,还有为降低费用设计的分裂和轮盘赌技巧,为逐步降低方差而设计的多极抽样技巧,为改善收敛速度而设计的拟蒙特卡罗法,为计算条件期望而设计的条件蒙特卡罗法等等。分裂和轮盘赌技巧的一般原理是,将x的积分区域分为重要和非重要两部分,对于抽样确定的X,当它属于重要区域时,对相应的Y 进行多次抽样;当它属于非重要区域时,只有在赌获胜时才对相应的Y 进行抽样。多级抽样技巧的一般原理是,在进行某一级抽样计算的同时,根据它所提供的抽样观察值,设计更好的抽样技巧,用新设计的抽样技巧进行新的一级的抽样计算,依次类推,最后用各级的结果的线性组合作为蒙特卡罗法的近似估计。拟蒙特卡罗法与一般蒙特卡罗法的最大区别是,前者不像后者那样要求子样 g(X1),g(X2),…,g(Xn)是相互独立的。用一致分布点列替代由随机数组成的点列的所谓数论方法,实际上就是一种拟蒙特卡罗法。条件蒙特卡罗法的一般原理是,首先将条件期望问题转化成为非条件期望问题,然后用解非条件期望的一般方法来解决条件期望计算问题。由于条件蒙特卡罗法中引进了任意分布密度函数,因此,可以选取合适的分布密度函数来实现进一步降低方差的目的。 优缺点 蒙特卡罗法的最大优点是,在方差存在的情况下,问题的维数不影响它的收敛速度,而只影响它的方差;问题几何形状的复杂性对它的影响不大;它不象其他数值方法那样对问题一定要进行离散化处理,而是常可以进行连续处理;它的程序结构简单,所需计算机存贮单元比其他数值方法少,这对于高维问题差别尤其显著。蒙特卡罗法的最大缺点是,对于维数少的问题它不如其他数值方法好;它的误差是概率误差,而不是一般意义下的误差。 应用 随着电子计算机的迅速发展和科学技术问题日趋复杂,蒙特卡罗法的应用越来越广泛,已经渗透到科学技术的各个领域。 在一些典型数学问题方面的应用主要有:多重积分计算、线性代数方程组求解、矩阵求逆、常微分方程边值问题求解、偏微分方程求解、非齐次线性积分方程求解、本征值计算和最优化计算等等。其中的多重积分计算、非齐次线性积分方程求解和齐次线性积分方程本征值计算等,不仅非常有代表性,而且有很大的实用价值,对于高维问题常比其他数值方法好。 在一些实际问题方面的应用主要有,屏蔽计算、核临界安全计算、反应堆物理计算、微扰计算、实验核物理计算、高能物理计算、核物理计算、统计物理计算、真空技术、公用事业、信息论、系统模拟、可靠性计算和计算机科学等等。其中的屏蔽计算、核临界安全计算、微扰计算、实验核物理计算和统计物理计算等,不仅非常有代表性,而且应用得很广泛,按蒙特卡罗法解决这些问题的能力讲,已经超过了其他计算方法的水平。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。