词条 | relativistic mechanics |
释义 | relativistic mechanics physics Introduction science concerned with the motion of bodies whose relative velocities approach the speed of light c, or whose kinetic energies are comparable with the product of their masses m and the square of the velocity of light, or mc2. Such bodies are said to be relativistic, and when their motion is studied, it is necessary to take into account Einstein's special theory of relativity. As long as gravitational (gravitation) effects can be ignored, which is true so long as gravitational potential energy differences are small compared with mc2, the effects of Einstein's general theory of relativity may be safely ignored. The bodies concerned may be sufficiently small that one may ignore their internal structure and size and regard them as point particles, in which case one speaks of relativistic point-particle mechanics; or one may need to take into account their internal structure, in which case one speaks of relativistic continuum mechanics. This article is concerned only with relativistic point-particle mechanics. It is also assumed that quantum mechanical effects are unimportant, otherwise relativistic quantum mechanics or relativistic quantum field theory—the latter theory being a quantum mechanical extension of relativistic continuum mechanics—would have to be considered. The condition that allows quantum effects to be safely ignored is that the sizes and separations of the bodies concerned are larger than their Compton wavelengths. (The Compton wavelength of a body of mass m is given by h/mc, where h is Planck's constant.) Despite these restrictions, there are nevertheless a number of situations in nature where relativistic mechanics is applicable. For example, it is essential to take into account the effects of relativity when calculating the motion of elementary particles accelerated to higher energies in particle accelerators, such as those at CERN (European Organization for Nuclear Research) near Geneva or at Fermilab (Fermi National Accelerator Laboratory) near Chicago. Moreover, such particles are caused to collide, thus creating further particles; although this creation process can only be understood through quantum mechanics, once the particles are well separated, they are subject to the laws of special relativity. Similar remarks apply to cosmic rays (cosmic ray) that reach the Earth from outer space. In some cases, these have energies as high as 1020 electron volts (eV). An electron of that energy has a velocity that differs from that of light by about 1 part in 1028, as can be seen from the relativistic relation between energy and velocity, which will be given later. For a proton of the same energy, the velocity would differ from that of light by about 1 part in 1022. At a more mundane level, relativistic mechanics must be used to calculate the energies of electrons or positrons emitted by the decay of radioactive nuclei. Astrophysicists need to use relativistic mechanics when dealing with the energy sources of stars, the energy released in supernova explosions, and the motion of electrons moving in the atmospheres of pulsars or when considering the hot big bang. At temperatures in the very early universe above 1010 kelvins (K), at which typical thermal energies kT (where k is Boltzmann's constant and T is temperature) are comparable with the rest mass energy of the electron, the primordial plasma must have been relativistic. Relativistic mechanics also must be considered when dealing with satellite navigational systems used, for example, by the military, such as the Global Positioning System (GPS) (GPS). In this case, however, it is the purely kinematic effect on the rate of clocks on board the satellites (i.e., time dilation) that is important rather than the dynamic effects of relativity on the motion of the satellites themselves. Development of the special theory of relativity Since the time of Galileo it has been realized that there exists a class of so-called inertial frames of reference—i.e., in a state of uniform motion with respect to one another such that one cannot, by purely mechanical experiments, distinguish one from the other. It follows that the laws of mechanics must take the same form in every inertial frame of reference. To the accuracy of present-day technology, the class of inertial frames may be regarded as those that are neither accelerating nor rotating with respect to the distant galaxies. To specify the motion of a body relative to a frame of reference, one gives its position x as a function of a time coordinate t (x is called the position vector and has the components x, y, and z). Newton's first law of motion (which remains true in special relativity) states that a body acted upon by no external forces will continue to move in a state of uniform motion relative to an inertial frame. It follows from this that the transformation between the coordinates (t, x) and (t′, x′) of two inertial frames with relative velocity u must be related by a linear transformation. Before Einstein's special theory of relativity was published in 1905, it was usually assumed that the time coordinates measured in all inertial frames were identical and equal to an “absolute time.” Thus, ![]() The position coordinates x and x′ were then assumed to be related by ![]() The two formulas (97--> ![]() ![]() The position of a light-wave front speeding from the origin at time zero should satisfy ![]() in the frame (t, x) and ![]() in the frame (t′, x′). Formula (100--> ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() where x‖ and x⊥ are the projections of x parallel and perpendicular to the velocity u, respectively, and similarly for x′. The reader may check that substitution of the Lorentz transformation formulas (101--> ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The laws of light propagation are the same in all frames related by Lorentz transformations, and the velocity of light is the same in all such frames. The same is true of Maxwell's laws of electromagnetism. However, the usual laws of mechanics are not the same in all frames related by Lorentz transformations and thus must be altered to agree with the principle of relativity. The unique absolute frame of rest with respect to which light waves had velocity c according to the prerelativistic viewpoint was often regarded, before Einstein, as being at rest relative to a hypothesized all-pervading ether. The vibrations of this ether were held to explain the phenomenon of electromagnetic radiation. The failure of experimenters to detect motion relative to this ether, together with the widespread acceptance of Einstein's special theory of relativity, led to the abandonment of the theory of the ether. It is ironic therefore to note that the discovery in 1964 by the American astrophysicists Arno Penzias and Robert Wilson of a universal cosmic microwave 3 K radiation background shows that the universe does indeed possess a privileged inertial frame. Nevertheless, this does not contradict special relativity because one cannot measure the Earth's velocity relative to it by experiments in a closed laboratory. One must actually detect the microwaves themselves. If the relative velocity u between inertial frames is small in magnitude compared with the velocity of light, then Galilean transformations and Lorentz transformations agree, as do the usual laws of nonrelativistic mechanics and the more accurate laws of relativistic mechanics. The requirement that the laws of physics take the same form in all inertial reference frames related by Lorentz transformations is called for the sake of brevity the requirement of relativistic invariance. It has become a powerful guide in the formation of new physical theories. Relativistic space-time The modification of the usual laws of mechanics may be understood purely in terms of the Lorentz transformation formulas (101--> ![]() ![]() The four-dimensional space is called Minkowski space-time and the curve a world line. It is frequently useful to represent physical processes by space-time diagrams in which time runs vertically and the spatial coordinates run horizontally. Of course, since space-time is four-dimensional, at least one of the spatial dimensions in the diagram must be suppressed. Newton's first law can be interpreted in four-dimensional space as the statement that the world lines of particles suffering no external forces are straight lines in space-time. Linear transformations take straight lines to straight lines, and Lorentz transformations have the additional property that they leave invariant the invariant interval τ through two events (t1, x1) and (t2, x2) given by ![]() Special Comp--> ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() If the right-hand side of equation (103--> ![]() ![]() ![]() ![]() For a particle moving with exactly the speed of light, one cannot define a proper time τ. One can, however, define a so-called affine parameter that satisfies equation (104--> ![]() Special Comp--> ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The fundamental laws of motion for a body of mass m in relativistic mechanics are ![]() and ![]() where m is the constant so-called rest mass of the body and the quantities (f 0, f) are the components of the force 4-vector. Equations (105--> ![]() ![]() ![]() ![]() Relativistic momentum, mass, and energy The law of motion (106--> ![]() ![]() where F = f √((1 − v2/c2) ) . Equation (107--> ![]() ![]() Consider a relativistic particle with positive energy and electric charge q moving in an electric field E and magnetic field B; it will experience an electromagnetic, or Lorentz, force (Lorentz force) given by F = qE + qv × B. If t(τ) and x(τ) are the time and space coordinates of the particle, it follows from equations (105--> ![]() ![]() Just as in nonrelativistic mechanics, the rate of work done when the point of application of a force F is moved with velocity v equals F ∙ v when measured with respect to the time coordinate t. This work goes into increasing the energy E of the particle. Taking the dot product of equation (107--> ![]() ![]() The reader should note that the 4-momentum is just (E/c2, p). It was once fairly common to encounter the use of a “velocity-dependent mass” equal to E/c2. However, experience has shown that its introduction serves no useful purpose and may lead to confusion, and it is not used in this article. The invariant quantity is the rest mass m. For that reason it has not been thought necessary to add a subscript or superscript to m to emphasize that it is the rest mass rather than a velocity-dependent quantity. When subscripts are attached to a mass, they indicate the particular particle of which it is the rest mass. If the applied force F is perpendicular to the velocity v, it follows from equation (109--> ![]() ![]() For velocities that are small compared with that of light, ![]() The first term, mc2, which remains even when the particle is at rest, is called the rest mass energy. For a single particle, its inclusion in the expression for energy might seem to be a matter of convention: it appears as an arbitrary constant of integration. However, for systems of particles that undergo collisions, its inclusion is essential. Both theory and experiment agree that, in a process in which particles of rest masses m1, m2, . . . mn collide or decay or transmute one into another, both the total energy E1 + E2 + . . . + En and the total momentum p1 + p2 + . . . + pn are the same before and after the process, even though the number of particles may not be the same before and after. This corresponds to conservation of the total 4-momentum (E1 + E2 + . . . + En)/c2, p1 + p2 + . . . + pn). The relativistic law of energy (energy, conservation of)-momentum (momentum, conservation of) conservation thus combines and generalizes in one relativistically invariant expression the separate conservation laws of prerelativistic physics: the conservation of mass, the conservation of momentum, and the conservation of energy. In fact, the law of conservation of mass becomes incorporated in the law of conservation of energy and is modified if the amount of energy exchanged is comparable with the rest mass energy of any of the particles. ![]() ![]() This article has so far dealt only with particles with non-vanishing rest mass whose velocities must always be less than that of light. One may always find an inertial reference frame with respect to which they are at rest and their energy in that frame equals mc2. However, special relativity allows a generalization of classical (speed of light) ideas to include particles with vanishing rest masses that can move only with the velocity of light. Particles in nature that correspond to this possibility and that could not, therefore, be incorporated into the classical scheme are the photon, which is associated with the transmission of electromagnetic radiation, and—more speculatively—the graviton, which plays the same role with respect to gravitational waves as does the photon with respect to electromagnetic waves. The velocity v of any particle in relativistic mechanics is given by v = pc2/E, and the relation between energy E and momentum is E2 = m2c4 + p2c2. Thus for massless particles E =|p|c and the 4-momentum is given by (|p|/c, p). It follows from the relativistic laws of energy and momentum conservation that, if a massless particle were to decay, it could do so only if the particles produced were all strictly massless and their momenta p1, p2, . . . pn were all strictly aligned with the momentum p of the original massless particle. Since this is a situation of vanishing likelihood, it follows that strictly massless particles are absolutely stable. ![]() ![]() Additional Reading An outstanding work containing an account of the special theory of relativity is Abraham Pais, “Subtle Is the Lord—”: The Science and Life of Albert Einstein (1982). Some good introductions at the undergraduate level are W. Rindler, Essential Relativity: Special, General, and Cosmological, 2nd ed. (1977); James H. Smith, Introduction to Special Relativity (1965); Edwin F. Taylor and John Archibald Wheeler, Spacetime Physics (1966). More substantial treatises are J. Aharoni, The Special Theory of Relativity, 2nd ed. (1965, reprinted 1985); and J.L. Synge, Relativity: The Special Theory, 2nd ed. (1965). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。