词条 | robot |
释义 | robot technology Introduction any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner. By extension, robotics is the engineering discipline dealing with the design, construction, and operation of robots. ![]() The word robotics first appeared in Isaac Asimov (Asimov, Isaac)'s science-fiction story "Runaround" (1942). Along with Asimov's later robot stories, it set a new standard of plausibility about the likely difficulty of developing intelligent robots and the technical and social problems that might result. "Runaround" also contained Asimov's famous Three Laws of Robotics: ● 1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm. ● 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law. ● 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law. This article traces the development of robots and robotics. For further information on industrial applications, see the article automation. Industrial robots ![]() More advanced computer-controlled electric arms guided by sensors were developed in the late 1960s and 1970s at the Massachusetts Institute of Technology (MIT) and at Stanford University, where they were used with cameras in robotic hand-eye research. Stanford's Victor Scheinman, working with Unimation for GM, designed the first such arm used in industry. Called PUMA (Programmable Universal Machine for Assembly), they have been used since 1978 to assemble automobile subcomponents such as dash panels and lights. PUMA was widely imitated, and its descendants, large and small, are still used for light assembly in electronics and other industries. Since the 1990s small electric arms have become important in molecular biology laboratories, precisely handling test-tube arrays and pipetting intricate sequences of reagents. Mobile industrial robots also first appeared in 1954. In that year a driverless electric cart, made by Barrett Electronics Corporation, began pulling loads around a South Carolina grocery warehouse. Such machines, dubbed AGVs (Automatic Guided Vehicles), commonly navigate by following signal-emitting wires entrenched in concrete floors. In the 1980s AGVs acquired microprocessor controllers that allowed more complex behaviours than those afforded by simple electronic controls. In the 1990s a new navigation method became popular for use in warehouses: AGVs equipped with a scanning laser triangulate their position by measuring reflections from fixed retro-reflectors (at least three of which must be visible from any location). Although industrial robots first appeared in the United States, the business did not thrive there. Unimation was acquired by Westinghouse Electric Corporation in 1983 and shut down a few years later. Cincinnati Milacron, Inc., the other major American hydraulic-arm manufacturer, sold its robotics division in 1990 to the Swedish firm of Asea Brown Boveri Ltd. Adept Technology, Inc., spun off from Stanford and Unimation to make electric arms, is the only remaining American firm. Foreign licensees of Unimation, notably in Japan and Sweden, continue to operate, and in the 1980s other companies in Japan and Europe began to vigorously enter the field. The prospect of an aging population and consequent worker shortage induced Japanese manufacturers to experiment with advanced automation even before it gave a clear return, opening a market for robot makers. By the late 1980s Japan—led by the robotics divisions of Fanuc Ltd., Matsushita Electric Industrial Company, Ltd., Mitsubishi Group, and Honda Motor Company, Ltd.—was the world leader in the manufacture and use of industrial robots. High labour costs in Europe similarly encouraged the adoption of robot substitutes, with industrial robot installations in the European Union exceeding Japanese installations for the first time in 2001. Robot toys (toy) ![]() ![]() Robotics research Dexterous industrial manipulators and industrial vision have roots in advanced robotics work conducted in artificial intelligence (AI) laboratories since the late 1960s. Yet, even more than with AI itself, these accomplishments fall far short of the motivating vision of machines with broad human abilities. Techniques for recognizing and manipulating objects, reliably navigating spaces, and planning actions have worked in some narrow, constrained contexts, but they have failed in more general circumstances. ![]() ![]() ![]() ![]() A particularly interesting testing ground for fully autonomous mobile robot research is football (football (soccer)) (soccer). In 1993 an international community of researchers organized a long-term program to develop robots capable of playing this sport, with progress tested in annual machine tournaments. The first RoboCup games were held in 1997 in Nagoya, Japan, with teams entered in three competition categories: computer simulation, small robots, and midsize robots. Merely finding and pushing the ball was a major accomplishment, but the event encouraged participants to share research, and play improved dramatically in subsequent years. In 1998 Sony began providing researchers with programmable AIBOs for a new competition category; this gave teams a standard reliable prebuilt hardware platform for software experimentation. While robot football has helped to coordinate and focus research in some specialized skills, research involving broader abilities is fragmented. Sensors—sonar and laser rangefinders, cameras, and special light sources—are used with algorithms that model images or spaces by using various geometric shapes and that attempt to deduce what a robot's position is, where and what other things are nearby, and how different tasks can be accomplished. Faster microprocessors developed in the 1990s have enabled new, broadly effective techniques. For example, by statistically weighing large quantities of sensor measurements, computers can mitigate individually confusing readings caused by reflections, blockages, bad illumination, or other complications. Another technique employs “automatic” learning to classify sensor inputs—for instance, into objects or situations—or to translate sensor states directly into desired behaviour. Connectionist neural networks containing thousands of adjustable-strength connections are the most famous learners, but smaller, more specialized frameworks usually learn faster and better. In some, a program that does the right thing as nearly as can be prearranged also has “adjustment knobs” to fine tune the behaviour. Another kind of learning remembers a large number of input instances and their correct responses and interpolates between them to deal with new inputs. Such techniques are already in broad use for computer software that converts speech into text. The future ![]() By 2040 computing power should make third-generation robots with monkeylike minds possible. Such robots would learn from mental rehearsals in simulations that would model physical, cultural, and psychological factors. Physical properties would include shape, weight, strength, texture, and appearance of things and knowledge of how to handle them. Cultural aspects would include a thing's name, value, proper location, and purpose. Psychological factors, applied to humans and other robots, would include goals, beliefs, feelings, and preferences. The simulation would track external events and would tune its models to keep them faithful to reality. This should let a robot learn by imitation and afford it a kind of consciousness. By the middle of the 21st century, fourth-generation robots may exist with humanlike mental power able to abstract and generalize. Researchers hope that such machines will result from melding powerful reasoning programs to third-generation machines. Properly educated, fourth-generation robots are likely to become intellectually formidable. Additional Reading Hans Moravec, Robot: Mere Machine to Transcendent Mind (1999), expands on the topics of this article. Peter Menzel and Faith D'Aluisio, Robo Sapiens: Evolution of a New Species (2000), provides dramatic images and commentary on robotics research. Rolf Dieter Schraft and Gernot Schmierer, Service Robots (2000), gives a broad pictorial survey of nonindustrial robots. Silvia Coradeschi et al. (eds.), Robocup 2001: Robot Soccer World Cup V (2002), contains technical presentations by the participants. |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。