词条 | beach |
释义 | beach geology ![]() ![]() The profile of an active beach varies greatly. Its form and dimensions depend on a number of factors, such as wave parameters, tide height, and sediment composition and distribution. The following, however, constitute some of the profile elements that commonly occur. At the upper part, above high sea level, a beach terrace is located, and there may be a series of beach ridges or berms created by the waves of a previous major storm. This terrace surface is inclined seaward. The next element is a steeper, frontal beach slope or face, and beneath it a low-tide terrace may be developed. If the tides are high enough (more than 2 m 【6.6 feet】), the frontal slope may be more than 1 km (0.6 mile) in width in regions with abundant sand and a shallow bottom. In some areas the low-tide terrace terminates with another inclined shoreface, if the nearshore sea zone is rather deep. Finally, one or several parallel, submarine, long-shore bars with intervening troughs may exist along sandy shores; if present, these bars constitute the last profile element. Some minor relief forms are usually present on the surface of sand beaches. These include oscillation ripples, swash or rill furrows, and the well-known beach cusps (concave seaward) at the beach margin. Given the established system of strong waves normal to the shoreline, submarine bars are sometimes dismembered and are converted into large crescent elements convex seaward. These relief forms reflect the existence of large water eddies with vertical axes, which form as a result of the ebb and flow of the water. Often the water outflow proceeds in the form of linear rip currents (rip current). These may be so strong that they cause erosion of deep channels in the submarine slopes. In many countries the wind strongly affects the dynamics of the beach. The beach is exposed to the sea wind, and sand is usually blown off to the rear parts of the beach, where it forms small hummocks. As these join together, foredunes are being built, and, if the beach is well-supplied with sand in the right area, several rows of dunes will be formed. When the sand is abundant, dunes will shift to adjacent low-lying plains and may bury fertile soils, woods, and buildings. If sand is no longer delivered to the region of developed dunes, gaps will form in the ridges parallel to the shore. In such zones, parabolic dunes with their summits coastward are created. After long stabilization, the summits of the parabolas may be broken through by the wind, thus gradually forming a series of ridges parallel to the prevailing winds. Beach sands in temperate latitudes consist mainly of quartz, some feldspars, and a small percentage of heavy minerals. In the tropics, however, calcareous beaches composed of skeletal remnants of marine organisms and precipitated particles, such as oolites, are widespread. ![]() The practical significance of beaches is not limited to their function as protectors of the coast or as recreation sites. The sorting mechanism of the offshore waves and currents determines the accumulation of heavy-mineral (specific weight more than 2.7) concentrates. On any sand beach there are thin layers of dark sand that can be seen. Some heavy minerals contain valuable metals, such as titanium, zirconium, germanium, tin, uranium, and gold. In many places the concentrations are so great that they are of industrial significance; placer deposits are worked in India, Brazil, Japan, Australia, Russia, and Alaska. Heavy-mineral concentrates also are extracted from the submarine slopes by means of dredging ships. |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。