词条 | semiconductor |
释义 | semiconductor electronics Introduction any of a class of crystalline solids intermediate in electrical conductivity between a conductor and an insulator. Semiconductors are employed in the manufacture of various kinds of electronic devices, including diodes (diode), transistors (transistor), and integrated circuits (integrated circuit). Such devices have found wide application because of their compactness, reliability, power efficiency, and low cost. As discrete components, they have found use in power devices, optical sensors, and light emitters, including solid-state lasers (laser). They have a wide range of current- and voltage-handling capabilities and, more important, lend themselves to integration into complex but readily manufacturable microelectronic circuits. They are, and will be in the foreseeable future, the key elements for the majority of electronic systems, serving communications, signal processing, computing, and control applications in both the consumer and industrial markets. Semiconductor materials ![]() ![]() ![]() Prior to the invention of the bipolar transistor in 1947, semiconductors were used only as two-terminal devices, such as rectifiers and photodiodes. During the early 1950s germanium was the major semiconductor material. However, it proved unsuitable for many applications, because devices made of the material exhibited high leakage currents at only moderately elevated temperatures. Since the early 1960s silicon has become by far the most widely used semiconductor, virtually supplanting germanium as a material for device fabrication. The main reasons for this are twofold: (1) silicon devices exhibit much lower leakage currents, and (2) silicon dioxide (SiO2), which is a high-quality insulator, is easy to incorporate as part of a silicon-based device. Thus, silicon technology has become very advanced and pervasive, with silicon devices constituting more than 95 percent of all semiconductor products sold worldwide. Many of the compound semiconductors have some specific electrical and optical properties that are superior to their counterparts in silicon. These semiconductors, especially gallium arsenide, are used mainly for optoelectronic and certain radio frequency (RF) applications. Electronic properties ![]() ![]() At low temperatures the electrons in a semiconductor are bound in their respective bands in the crystal; consequently, they are not available for electrical conduction. At higher temperatures thermal vibration may break some of the covalent bonds to yield free electrons that can participate in current conduction. Once an electron moves away from a covalent bond, there is an electron vacancy associated with that bond. This vacancy may be filled by a neighbouring electron, which results in a shift of the vacancy location from one crystal site to another. This vacancy may be regarded as a fictitious particle, dubbed a “ hole,” that carries a positive charge and moves in a direction opposite to that of an electron. When an electric field is applied to the semiconductor, both the free electrons (now residing in the conduction band) and the holes (left behind in the valence band) move through the crystal, producing an electric current. The electrical conductivity of a material depends on the number of free electrons and holes (charge carriers) per unit volume and on the rate at which these carriers move under the influence of an electric field. In an intrinsic semiconductor there exists an equal number of free electrons and holes. The electrons and holes, however, have different mobilities; that is, they move with different velocities in an electric field. For example, for intrinsic silicon at room temperature, the electron mobility is 1,500 square centimetres per volt-second (cm2/V·s)—i.e., an electron will move at a velocity of 1,500 centimetres per second under an electric field of one volt per centimetre—while the hole mobility is 500 cm2/V·s. The electron and hole mobilities in a particular semiconductor generally decrease with increasing temperature. ![]() ![]() The junction (p-n junction) ![]() ![]() The most important characteristic of p-n junctions is that they rectify. When a forward bias is applied to the p-n junction (i.e., a positive voltage applied to the p-side with respect to the n-side), the majority charge carriers move across the junction so that a large current can flow. However, when a reverse bias is applied, the charge carriers introduced by the impurities move in opposite directions away from the junction, and only a small leakage current flows. As the reverse bias is increased, the leakage current remains very small until a critical voltage is reached, at which point the current suddenly increases. This sudden increase in current is referred to as the junction breakdown, usually a nondestructive phenomenon if the resulting power dissipation is limited to a safe value. The applied forward voltage is typically less than one volt, but the reverse critical voltage, called the breakdown voltage, can vary from less than one volt to many thousands of volts, depending on the impurity concentration of the junction and other device parameters. Although other junction types have been invented (including p-n-p and n-p-n), p-n junctions remain fundamental to semiconductor devices. For further details on applications on these basic semiconductor properties, see transistor and integrated circuit. Additional Reading Simon M. Sze, Physics of Semiconductor Devices, 2nd ed. (1981), is a classic, in-depth treatment of the physics and mathematical models of semiconductor devices. Simon M. Sze (ed.), Modern Semiconductor Device Physics (1998), updates and complements the preceding book. |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。