词条 | carnivore |
释义 | carnivore mammal order Introduction ![]() The order Carnivora includes 12 families, 9 of which live on land: Canidae (canine) (dogs (dog) and related species), Felidae (feline) (cats), Ursidae ( bears), Procyonidae (procyonid) ( raccoons and related species), Mustelidae (mustelid) ( weasels, badgers, otters, and related species), Mephitidae ( skunks and stink badgers), Herpestidae ( mongooses), Viverridae (viverrid) ( civets, genets, and related species), and Hyaenidae ( hyenas). There are three aquatic families: Otariidae ( sea lions and fur seals), Phocidae (true, or earless, seals), and Odobenidae (the walrus). These aquatic families are referred to as pinnipeds. Importance of Carnivora ![]() ![]() ![]() ![]() ![]() Behaviour ![]() ![]() Carnivorous mammals tend to establish territories, though omnivorous carnivores, such as the black bear, striped skunk, and raccoon, are less apt to do so. Territories (territorial behaviour) are often exclusive, defended by the residents against other animals of their own kind. Such areas may sometimes be marked by secretions produced by anal or other scent glands and by deposition of feces in prominent locations. ![]() ![]() Form and function The smallest living member of Carnivora is the least weasel (Mustela nivalis), which weighs only 25 grams (0.9 ounce). The largest terrestrial form is the Kodiak bear (Ursus arctos middendorffi), an Alaskan grizzly bear that is even larger than the polar bear (Ursus maritimus). The largest aquatic form is the elephant seal (Mirounga leonina), which may weigh 3,700 kg (8,150 pounds). Most carnivores weigh between 4 and 8 kg (9 and 18 pounds). The vast majority of species are terrestrial, but the pinnipeds are highly adapted to life in the water. Some nonpinnipeds, such as the sea otter, are almost fully aquatic, while others, such as the river otter and polar bear, are semiaquatic, spending most of their lives in or near water. Aquatic and semiaquatic forms have developed specializations such as streamlined bodies and webbed feet. Carnivores, like other mammals, possess a number of different kinds of teeth: incisors in front, followed by canines, premolars, and molars in the rear. Most carnivores have carnassial, or shearing, teeth that function in slicing meat and cutting tough sinews. The carnassials are usually formed by the fourth upper premolar and the first lower molar, working one against the other with a scissorlike action. Cats, hyenas, and weasels, all highly carnivorous, have well-developed carnassials. Bears and procyonids (except the olingo), which tend to be omnivorous, and seals, which eat fish or marine invertebrates, have little or no modification of these teeth for shearing. The teeth behind the carnassials tend to be lost or reduced in size in highly carnivorous species. Most members of the order have six prominent incisors on both the upper and lower jaw, two canines on each jaw, six to eight premolars, and four molars above and four to six molars below. Incisors are adapted for nipping off flesh. The outermost incisors are usually larger than the inner ones. The strong canines are usually large, pointed, and adapted to aid in the stabbing of prey. The premolars always have sharply pointed cusps, and in some forms (e.g., seals) all the cheek teeth (premolars and molars) have this shape. Except for the carnassials, molars tend to be flat teeth utilized for crushing. Terrestrial carnivores that depend largely on meat tend to have fewer teeth (30–34), the flat molars having been lost. Omnivorous carnivores, such as raccoons and bears, have more teeth (40–42). Pinnipeds have fewer teeth than terrestrial carnivores. In addition, pinnipeds exhibit little stability in number of teeth; for example, a walrus may have from 18 to 24 teeth. Several features of the skeleton are characteristic of the order Carnivora. Articulating surfaces (condyles) on the lower jaw form a half-cylindrical hinge that allows the jaw to move only in a vertical plane and with considerable strength. The clavicles (clavicle) (collarbones) are either reduced or absent entirely and, if present, are usually embedded in muscles without articulation with other bones. This allows for a greater flexibility in the shoulder area and prevents breakage of the clavicles when the animal springs on its prey. The brain is large in relation to the weight of the body, and it contains complex convolutions characteristic of highly intelligent animals. The stomach is simple as opposed to multichambered, and a blind pouch ( cecum) attached to the intestine is usually reduced or absent. Since animal tissues are in general simpler to digest than plant tissues, the carnivore's dependence on a diet with a high proportion of meat has led to less-complex compartmentalization of the stomach and a decrease in the length and folding (and therefore surface area) of the intestine. The teats are located on the abdomen along two primitive lines (milk ridges), a characteristic of mammals that lie down when nursing. Many carnivores have a well-developed penis bone, or baculum. It appears that this structure plays a role in helping to increase the success of copulation and fertilization of eggs in species where numerous males mate with a single female. Cats have a vestigial baculum or none at all, but the baculum of the walrus can measure up to 54 cm (21 inches). Distribution and abundance ![]() ![]() Classification Distinguishing taxonomic features There is great diversity in Carnivora, especially among the highly specialized pinnipeds. Thus, the characteristics used to separate Carnivora from other mammalian orders and to define the subdivisions of Carnivora are primarily structural. Of great importance are certain features of the skull (such as jaw articulation), feet (number of toes, lack of opposability of the hind toe, type of claws, and fusion of certain bones), and teeth (both the overall tooth pattern and the shape of individual teeth). Dentition is especially important in determining the relationships of fossil forms. Also useful in the taxonomy of modern carnivores are the convolutions around the lateral, or Sylvian, fissure of the brain, the relative weights of the adrenal and thyroid glands, the type of uterus and placenta, and the position of the nipples. Critical appraisal The taxonomy of the major categories of major groups placed in the Carnivora has been in a state of flux for more than a century, and these categories do not seem to be stabilizing, even today. Most mammalogists at present regard the seals and terrestrial carnivores as belonging to different orders, the Pinnipedia and Carnivora. There are, in reality, only a few features common to the seals and their terrestrial relatives because of the extensive and numerous adaptations the aquatic forms have undergone to make them efficient carnivores of the sea. Mammalogists who have studied seals intensively now realize that there is no anatomical structure unmodified by the extensive aquatic adaptations; every organ and tissue examined has been found to be different in some way from its counterpart in terrestrial forms. Other mammalogists, tending toward conservative taxonomy, think the relationship of the terrestrial and aquatic carnivores can be best expressed by retaining them in two suborders, the Fissipedia (“split-footed”) and Pinnipedia (“feather-footed”), of the single order Carnivora. This more conservative taxonomy is followed in this article. Of the living families recognized in the Carnivora, two have separated from their lines most recently and are most easily associated with other existing families: the Odobenidae (walrus) with the Otariidae (eared seals) and the Hyaenidae (hyenas) with the Viverridae (civets). Moreover, a new family, the Mephitidae (skunks and stink badgers), has been proposed as an offshoot from the Mustelidae (weasels). It appears that skunks do indeed possess enough differentiation in features and genetics to warrant the new grouping. Taxonomy of several species of carnivore remains uncertain. Among those, two of the most problematic species are the lesser, or red, panda (panda) (Ailurus fulgens) and the giant panda (panda, giant) (Ailuropoda melanoleuca). Both species have been classified equally often in the Ursidae (bears) or the Procyonidae (raccoons). However, the latest classification includes them under Ursidae. Another lesser-known species, the fossa (Cryptoprocta ferox), is regarded as a viverrid but retains characteristics of cats as well. It has been alternatively placed in Herpestidae, Viverridae, and even Felidae. The arrangement of the nine terrestrial families into two distinct superfamilies, Canoidea and Feloidea (or Aeluroidea), appears to be a natural arrangement dating back to the works of W.H. Flower and H. Winge in the late 1800s. In Canoidea, as revealed by studies in comparative anatomy and the fossil record, the families Canidae, Ursidae, and Procyonidae seem to be most closely related. Also placed in the Canoidea is the family Mustelidae, although some of the more primitive members show resemblances to the primitive viverrids as well as to the canids. In the Feloidea, the families Viverridae and Hyaenidae seem most closely related, the Felidae being the most aberrant. Those families that contain rather diverse lines have been divided into subfamilies, the number of subfamilies in each family indicating the amount of evolutionary divergence that has occurred. The groups that have probably been distinct the greatest length of time have the most subfamilies, Viverridae with six and Mustelidae with five. As a result of such complicated taxonomic appraisal, the formal classification of Carnivora is in some ways an artificial system set up for the sake of convenience. Ideally, the system reflects real evolutionary relationships, but these must be inferred from a scanty fossil record and from comparisons of modern species. Since there are differences of opinion among specialists as to which taxonomic characteristics should be given priority, there are certain to be alternate classifications, the acceptability of which depends on new information continually being discovered. Undoubtedly, advanced genetic fingerprinting and DNA analyses will allow a more objective classification of species within the order. 274 species found worldwide but introduced to Australia. Suborder Fissipedia Family Mustelidae (mustelid) ( weasels and related species) 54 species in 21 genera belonging to 5 subfamilies, found worldwide except for Australia. Family Herpestidae (mongoose) ( mongooses) 37 species in 18 genera belonging to 2 subfamilies, found in the Old World. Family Felidae (feline) ( felines, or cats) 37 species in 18 genera belonging to 3 subfamilies, found worldwide except for Australia. Family Canidae (canine) ( canines) 35 species in 13 genera, found worldwide but introduced to Australia. Family Viverridae (viverrid) ( civets and related species) 35 species in 20 genera belonging to 6 subfamilies, found in the Old World. Family Procyonidae (procyonid) ( raccoons and related species) 18 species in 6 genera belonging to 2 subfamilies, found in the New World. Family Mephitidae ( skunks and stink badgers) 11 species in 4 genera, found in the New World and Southeast Asia. Family Ursidae (bear) ( bears) 9 species in 6 genera belonging to 2 subfamilies, found in North America, South America, Europe, and Asia. Family Hyaenidae ( hyenas and the aardwolf) 4 species in 4 genera belonging to 3 subfamilies, found in Africa and southern Asia. Suborder Pinnipedia (pinniped) ( pinnipeds) 34 species in 18 genera belonging to 3 families, found primarily in marine waters. Family Phocidae (true, or earless, seals) 19 species in 10 genera. Family Otariidae (eared seals) 14 species in 7 genera. Family Odobenidae ( walrus) 1 Arctic species. Additional Reading For general information on the biology of the carnivores, see E.P. Walker et al., Mammals of the World, 3 vol. (1964), in which each genus is described and illustrated, along with a brief summation of its biology. The taxonomy of carnivores is discussed in G.G. Simpson, “Principles of Classification and a Classification of Mammals,” Bull. Am. Mus. Nat. Hist., vol. 85 (1945), a classic work on classification, followed by most recent mammalogists; and H.J. Stains, “Carnivores and Pinnipeds,” in S. Anderson and J.K. Jones, Jr. (eds.), Recent Mammals of the World: A Synopsis of Families (1967). F.E. Beddard, Mammalia (1902, reprinted 1958), is a definitive early work on mammalian anatomy. The paleontology of the Carnivora is summarized in two works by A.S. Romer: Vertebrate Paleontology, 3rd ed. (1966), fundamental to an understanding of fossil forms, and Notes and Comments on Vertebrate Paleontology (1968), containing additional information not found in the general text. Books devoted to particular subgroups of the carnivores include A. Denis, Cats of the World (1964), an excellent summary of the status of all members of the Felidae; C.J. Harris, Otters (1968), a fine summary of the status of the otters around the world; H.E. Hinton and A.M.S. Dunn, Mongooses: Their Natural History and Behaviour (1967), which contains much interesting information that is difficult to find elsewhere, except in scattered literature; R.J. Harrison et al. (eds.), The Behavior and Physiology of Pinnipeds (1968), an excellent summation of knowledge on these aquatic carnivores; and V.B. Scheffer, Seals, Sea Lions, and Walruses: A Review of the Pinnipedia (1958), a major work on the taxonomy of the Pinnipedia. |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。