词条 | conic section |
释义 | conic section geometry Introduction also called conic ![]() ![]() The basic descriptions, but not the names, of the conic sections can be traced to Menaechmus (flourished c. 350 BC), a pupil of both Plato and Eudoxus of Cnidus. Apollonius of Perga (c. 262–190 BC), known as the “Great Geometer,” gave the conic sections their names and was the first to define the two branches of the hyperbola (which presuppose the double cone). Apollonius's eight-volume treatise on the conic sections, Conics, is one of the greatest scientific works from the ancient world. Analytic definition ![]() ![]() Every conic section corresponds to the graph of a second degree polynomial equation of the form Ax2+By2+2Cxy+2Dx+2Ey+F=0, where x and y are variables and A, B, C, D, E, and F are coefficients that depend upon the particular conic. By a suitable choice of coordinate axes, the equation for any conic can be reduced to one of three simple r forms: x2/a2+y2/b2=1, x2/a2−y2/b2=1, or y2=2px, corresponding to an ellipse, a hyperbola, and a parabola, respectively. (An ellipse where a =b is in fact a circle.) The extensive use of coordinate systems for the algebraic analysis of geometric curves originated with René Descartes (Descartes, René) (1596–1650). See History of geometry: Cartesian geometry (geometry). Greek origins The early history of conic sections is joined to the problem of “doubling the cube.” According to Eratosthenes of Cyrene (c. 276–190 BC), the people of Delos consulted the oracle of Apollo (oracle) for aid in ending a plague (c. 430 BC) and were instructed to build Apollo a new altar of twice the old altar's volume and with the same cubic shape. Perplexed, the Delians consulted Plato, who stated that “the oracle meant, not that the god wanted an altar of double the size, but that he wished, in setting them the task, to shame the Greeks for their neglect of mathematics and their contempt for geometry.” Hippocrates of Chios (c. 470–410 BC) first discovered that the “Delian problem” can be reduced to finding two mean proportionals between a and 2a (the volumes of the respective altars)—that is, determining x and y such that a:x=x:y=y:2a. This is equivalent to solving simultaneously any two of the equations x2=ay, y2=2ax, and xy=2a2, which correspond to two parabolas and a hyperbola, respectively. Later, Archimedes (c. 290–211 BC) showed how to use conic sections to divide a sphere into two segments having a given ratio. Diocles (c. 200 BC) demonstrated geometrically that rays—for instance, from the Sun—that are parallel to the axis of a paraboloid of revolution (produced by rotating a parabola about its axis of symmetry) meet at the focus. Archimedes is said to have used this property to set enemy ships on fire. The focal properties of the ellipse were cited by Anthemius of Tralles, one of the architects for Hagia Sophia Cathedral (Hagia Sophia) in Constantinople (completed in AD 537), as a means of ensuring that an altar could be illuminated by sunlight all day. Post-Greek applications ![]() ![]() Additional Reading The early history of conic sections can be traced in Wilbur Richard Knorr, The Ancient Tradition of Geometric Problems (1986, reissued 1993). Victor J. Katz, A History of Mathematics: An Introduction, 2nd ed. (1998), includes information on the later development of conic sections. The mathematics of conic sections is richly presented in W. Gellert et al. (eds.), The VNR Concise Encyclopedia of Mathematics, 2nd ed. (1989). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。