词条 | planation surface |
释义 | planation surface geology Introduction any low-relief plain cutting across varied rocks and structures. Among the most common landscapes on Earth, planation surfaces include pediments, pediplains, etchplains, and peneplains. There has been much scientific controversy over the origins of such surfaces. Because genetic implications are so often associated with various names, it seems best to refer to these features as simply planation surfaces. ![]() ![]() ![]() ![]() Pediments (pediment) The portion of a plain adjacent to mountain slopes is known as a piedmont. In desert regions the characteristic faceted slopes of the mountain front result in a pronounced juncture of mountain and piedmont, the piedmont angle. Where piedmonts have experienced extensive erosion, often to a degree that bedrock is exposed, they constitute pediments. There may be a veneer of alluvium over the erosional surface, particularly where soft rocks (e.g., shales) occur on the piedmont. Massive rocks, such as granite, may develop spectacular bare-rock pediments that sharply mark a mountain front. ![]() ![]() The growth of pediments at the expense of the mountain mass results in retreat of the mountain front. For a small mountain range in an area of tectonic stability, the entire range may be eroded. This leaves a dome-like surface composed of the coalesced pediments. Cima Dome in the eastern Mojave Desert of California is an excellent example of this advanced stage of planation. Pediplain Where pedimentation occurs over broad regions, the coalesced surface is termed a pediplain. King believed that this process was responsible for many of the ancient planation surfaces of the world. Most geomorphologists, however, consider pedimentation to be a local process at mountain fronts, perhaps capable of generating planation surfaces for an individual mountain range but not uniquely the cause of globally correlated surfaces. Etchplain Where deep weathering occurs on a landscape, a dichotomy is set up between the thick regolith of weak, weathered rock and the underlying zone of intact rock. If subsequent erosion removes the weathered regolith, then a new planation surface develops through exposure of the old weathering front. This process often results in the exposure of structurally defined compartments of resistant rock. A subsurface landscape is essentially etched from the rock by deep weathering and subsequent removal of weathered products. Etchplanation appears to have been especially characteristic of the ancient, stable cratonic areas of Gondwanaland (Gondwana), the supercontinent that many researchers believe once existed in the Southern Hemisphere. Deep weathering, generally tropical laterization, occurred through the Mesozoic and Early Tertiary. Great planation surfaces developed as tectonic factors influenced the periodic removal of weathering products. peneplain The concept of a peneplain (the word meaning “almost a plain”) emerged from W.M. Davis' cyclic view of landscape evolution. As rivers and hillslopes reduced relief through the phases of youth, maturity, and old age, explained Davis, the eventual result was a plain of extremely low relief. This plain could only change very slowly, since potential energy for fluvial action was greatly reduced. Such a peneplain, as with any planation surface, could become relict when renewed uplift induced stream incision below its former position on the plain. Because it is tied genetically to the Davisian theory of landscape development, the concept of peneplains is rarely used in modern geomorphology. There is, however, frequent reference to peneplanation in older literature. For modern applications, it is best to use a purely descriptive term such as planation surface or erosion surface for features that were formerly classified as peneplains. Additional Reading See George F. Adams (ed.), Planation Surfaces: Peneplains, Pediplains, and Etchplains (1975). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。