词条 | electric generator |
释义 | electric generator instrument Introduction also called dynamo, any machine that converts mechanical energy to electricity for transmission and distribution over power lines to domestic, commercial, and industrial customers. Generators also produce the electrical power required for automobiles, aircraft, ships, and trains. The mechanical power for an electric generator is usually obtained from a rotating shaft and is equal to the shaft torque multiplied by the rotational, or angular, velocity. The mechanical power may come from a number of sources: hydraulic turbines (turbine) at dams or waterfalls; wind turbines; steam turbines using steam produced with heat from the combustion of fossil fuels or from nuclear fission; gas turbines burning gas directly in the turbine; or gasoline and diesel engines. The construction and the speed of the generator may vary considerably depending on the characteristics of the mechanical prime mover. Nearly all generators used to supply electric power networks generate alternating current, which reverses polarity at a fixed frequency (usually 50 or 60 cycles, or double reversals, per second). Since a number of generators are connected into a power network, they must operate at the same frequency for simultaneous generation. They are therefore known as synchronous generators or, in some contexts, alternators. Synchronous generators ![]() ![]() Rotor ![]() ![]() ![]() ![]() Stator ![]() ![]() ![]() ![]() ![]() ![]() frequency ![]() ![]() Stator windings ![]() ![]() Phases (phase) ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Field excitation ![]() ![]() The power required for the field winding is that which is dissipated as heat in the winding resistance. In large generators, this is usually less than 1 percent of the generator rating, but in a generator with a capacity of 1,000 megavolt-amperes this will still be several megawatts. For most large synchronous generators, the field current is provided by another generator, known as an exciter, mounted on the same shaft. This may be a direct-current generator. In most modern installations, a synchronous generator is used as the exciter. For this purpose, the field windings of the exciter are placed on its stator and the phase windings on its rotor. A rectifier mounted on the rotating shaft is used to convert the alternating current to direct current. The field current of the main generator can then be adjusted by controlling the field current of the exciter. Generator rating The capacity of a synchronous generator is equal to the product of the voltage per phase, the current per phase, and the number of phases. It is normally stated in megavolt-amperes (MVA) for large generators or kilovolt-amperes (kVA) for small generators. Both the voltage and the current are the effective, or rms, values (equal to the peak value divided by √2). The voltage rating of the generator is normally stated as the operating voltage between two of its three terminals—i.e., the phase-to-phase voltage. For a winding connected in delta, this is equal to the phase-winding voltage. For a winding connected in wye, it is equal to √3 times the phase-winding voltage. The capacity rating of the machine differs from its shaft power because of two factors—namely, the power factor and the efficiency. The power factor is the ratio of the real power delivered to the electrical load divided by the total voltage–current product for all phases. The efficiency is the ratio of the electrical power output to the mechanical power input. The difference between these two power values is the power loss consisting of losses in the magnetic iron due to the changing flux, losses in the resistance of the stator and rotor conductors, and losses from the windage and bearing friction. In large synchronous generators, these losses are generally less than 5 percent of the capacity rating. These losses must be removed from the generator by a cooling system to maintain the temperature within the limit imposed by the insulation of the windings. High-speed synchronous generators ![]() ![]() The stator provides a path for the continuously varying magnetic flux. The stator core is therefore constructed of thin sheets, or laminations, of magnetic steel. The steel, being an electrical conductor, would tend to short-circuit the voltage induced in it if it were solid. Lamination breaks up the conducting path along the stator length and keeps the power losses in the stator steel at an acceptable value. Slots are punched around the inside periphery of the laminations to accommodate the stator coils. In large generators, each stator coil normally contains only one turn. High-speed generators are enclosed within a closed cylindrical stator housing that extends between the bearings at the two ends. They are cooled by hydrogen gas circulating within the housing and also frequently through ducts within the stator conductors. Very large generators are cooled by circulating water through the stator and rotor conductors. The ratings of synchronous generators for large power systems extend up to about 2,000 megavolt-amperes. Smaller power systems use generators of lower rating (e.g., 50 megavolt-amperes and up) since it is usually not desirable to have more than 10 percent of the total required system generation in one machine. Waterwheel generators ![]() ![]() Large hydraulic generators may have individual ratings in excess of 200 megavolt-amperes. They are mounted with a vertical shaft directly coupled to the turbine. The combination is usually supported on a single bearing, either above or below. The diameter is made relatively large to obtain a high peripheral velocity at low rotational speeds. The axial length of the generator is relatively short. The windings are frequently water-cooled. The rotor has to be designed to withstand a considerable overspeed condition that may arise if the generator loses its electrical load and there is a significant time delay in cutting off the water flow to the turbine. Generators for motor vehicles Vehicles such as automobiles, buses, and trucks require a direct-voltage supply for ignition, lights, fans, and so forth. In modern vehicles the electric power is generated by an alternator mechanically coupled to the engine. The alternator normally has a rotor field coil supplied with current through slip rings. The stator is fitted with a three-phase winding. A rectifier is used to convert the power from alternating to direct form. A regulator is used to control the field current so that the output voltage of the alternator-rectifier is properly matched to the battery voltage as the speed of the engine varies. Permanent-magnet generators For some applications, the magnetic field of the generator may be provided by permanent magnets. The rotor structure can consist of a ring of magnetic iron with magnets mounted on its surface. A magnet material such as neodymium-boron-iron or samarium-cobalt can provide a magnetic flux density in the air gap comparable to that produced with field windings, using a radial depth of magnet of less than 10 millimetres. Other magnet materials such as ferrite can be used, but with a considerable reduction in air-gap flux density and a corresponding increase in generator dimensions. Permanent-magnet generators are simple in that they require no system for the provision of field current. They are highly reliable. They do not, however, contain any means for controlling the output voltage. A typical example of use is with a wind turbine where the generator output of variable voltage and frequency is supplied to a power system through an electronic frequency converter. Induction generators An induction machine can operate as a generator if it is connected to an electric supply network operating at a substantially constant voltage and frequency. If torque is applied to the induction machine by a prime mover, it will tend to rotate somewhat faster than its synchronous speed, which is equal to 120 f/p revolutions per minute, where f is the supply frequency and p is the number of poles in the machine. The rotor conductors, moving faster than the air-gap field, will have induced currents that interact with the magnetic field to produce a torque with which to balance that applied by the prime mover. A stator current will then flow into the supply network delivering electrical power. The amount of power delivered is approximately proportional to the difference between the rotor speed and the field speed. This difference is typically of the order of 0.5 to 2 percent of rated speed at rated load. An induction generator cannot normally provide an independent electrical power source because it does not contain a source of its own magnetic field. Stand-alone induction generators can, however, operate with the aid of appropriate loading capacitors. Induction generators are frequently preferred over synchronous generators for small hydroelectric sites because they are not subject to loss of synchronism following transient changes in the power system. Inductor alternators An inductor alternator is a special kind of synchronous generator in which both the field and the output winding are on the stator. In the homopolar type of machine, the magnetic flux is produced by direct current in a stationary field coil concentric with the shaft. In the heteropolar type, the field coils are in slots in the stator. Voltage is generated in the output windings by pulsations in the flux in individual stator teeth. These pulsations are produced by use of a toothed rotor, which causes the reluctance of the air path from the rotor to each stator tooth to vary periodically with rotation. Inductor alternators are useful as high-frequency generators. They also are useful in situations requiring high reliability, a feature achieved by their having no electrical connections to the rotor. Direct-current generators A direct-current (DC) generator is a rotating machine that supplies an electrical output with unidirectional voltage and current. The basic principles of operation are the same as those for synchronous generators. Voltage is induced in coils by the rate of change of the magnetic field through the coils as the machine rotates. This induced voltage is inherently alternating in form since the coil flux increases and then decreases, with a zero average value. The field is produced by direct current in field coils or by permanent magnets on the stator. The output, or armature, windings are placed in slots in the cylindrical iron rotor. A simplified machine with only one rotor coil is shown in Figure 6. The rotor is fitted with a mechanical rotating switch, or commutator, that connects the rotor coil to the stationary output terminals through carbon brushes. This commutator reverses the connections at the two instants in each rotation when the rate of change of flux in the coil is zero—i.e., when the enclosed flux is maximum (positive) or minimum (negative). The output voltage is then unidirectional but is pulsating for the simple case of one rotor coil. In practical 2-pole machines, the rotor contains many coils symmetrically arranged in slots around the periphery and all connected in series. Each coil is connected to a segment on a multi-bar commutator. In this way, the output voltage consists of the sum of the induced voltages in a number of individual coils displaced around half the periphery. The magnitude of the output voltage is then approximately constant, containing only a small ripple. The voltage magnitude is proportional to the rotor speed and the magnetic flux. Control of output voltage is normally provided by control of the direct current in the field. For convenience in design, direct-current generators are usually constructed with four to eight field poles, partly to shorten the end connections on the rotor coils and partly to reduce the amount of magnetic iron needed in the stator. The number of stationary brushes bearing on the rotating commutator is usually equal to the number of poles but may be only two in some designs. ![]() ![]() ![]() ![]() Direct-current generators were widely used prior to the availability of economical rectifier systems supplied by alternators. For example, they were commonly employed for charging batteries and for electrolytic systems. In some applications, the direct-current generator retains an advantage over the alternator-rectifier in that it can operate as a motor as well, reversing the direction of power flow. An alternator, by contrast, must be fitted with a more complex rectifier-inverter system to accomplish power reversal. Additional Reading Overviews may be found in the following texts: Gordon R. Slemon, Electric Machines and Drives (1992); Syed A. Nasar (ed.), Handbook of Electric Machines (1987); Syed A. Nasar and L.E. Unnewehr, Electromechanics and Electric Machines, 2nd ed. (1983); Vincent Del Toro, Electric Machines and Power Systems (1985); and George McPherson and Robert D. Laramore, An Introduction to Electrical Machines and Transformers, 2nd ed. (1990). |
随便看 |
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。