请输入您要查询的百科知识:

 

词条 Hilbert space
释义
Hilbert space
mathematics
in mathematics, an example of an infinite-dimensional space that had a major impact in analysis and topology. The German mathematician David Hilbert (Hilbert, David) first described this space in his work on integral equations (integral equation) and Fourier series, which occupied his attention during the period 1902–12.
The points of Hilbert space are infinite sequences (x1, x2, x3, …) of real numbers (real number) that are square summable, that is, for which the infinite series x12+ x22+ x32+… converges to some finite number. In direct analogy with n-dimensional Euclidean space, Hilbert space is a vector space that has a natural inner product, or dot product (vector analysis), providing a distance function. Under this distance function it becomes a complete metric space and, thus, is an example of what mathematicians call a complete inner product space.
Soon after Hilbert's investigation, the Austrian-German mathematician Ernst Fischer and the Hungarian mathematician Frigyes Riesz (Riesz, Frigyes) proved that square integrable functions (functions such that integration of the square of their absolute value is finite) could also be considered as “points” in a complete inner product space that is equivalent to Hilbert space. In this context, Hilbert space played a role in the development of quantum mechanics, and it has continued to be an important mathematical tool in applied mathematics and mathematical physics.
In analysis, the discovery of Hilbert space ushered in functional analysis, a new field in which mathematicians study the properties of quite general linear spaces. Among these spaces are the complete inner product spaces, which now are called Hilbert spaces, a designation first used in 1929 by the Hungarian-American mathematician John von Neumann (von Neumann, John) to describe these spaces in an abstract axiomatic way. Hilbert space has also provided a source for rich ideas in topology. As a metric space, Hilbert space can be considered an infinite-dimensional linear topological space, and important questions related to its topological properties were raised in the first half of the 20th century. Motivated initially by such properties of Hilbert spaces, researchers established a new subfield of topology called infinite dimensional topology in the 1960s and '70s.
Stephan C. Carlson
随便看

 

百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Newdu.com All Rights Reserved
更新时间:2025/5/1 16:33:22