词条 | algebraic surface |
释义 | algebraic surface in three-dimensional space, a surface the equation of which is f(x,y,z)=0, with f(x,y,z) a polynomial in x, y, z. The order of the surface is the degree of the polynomial equation. If the surface is of the first order, it is a plane. If the surface is of order two, it is called a quadric surface. By rotating the surface, its equation can be put in the form Ax2 + By2 + Cz2 + Dx+ Ey + Fz= G. ![]() ax2+by2+cz2=1. This surface is called an ellipsoid if a, b, and c are positive. If one of the coefficients is negative, the surface is a hyperboloid of one sheet; if two of the coefficients are negative, the surface is a hyperboloid of two sheets. A hyperboloid of one sheet has a saddle point (a point on a curved surface shaped like a saddle at which the curvatures in two mutually perpendicular planes are of opposite signs, just like a saddle is curved up in one direction and down in another). ![]() |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。