词条 | prime number theorem |
释义 | prime number theorem mathematics ![]() ![]() Ancient Greek mathematicians were the first to study the mathematical properties of prime numbers. (Earlier many people had studied such numbers for their supposed mystical or spiritual qualities.) While many people noticed that the primes seem to “thin out” as the numbers get larger, Euclid in his Elements (c. 300 BC) may have been the first to prove that there is no largest prime; in other words, there are infinitely many primes. Over the ensuing centuries, mathematicians sought, and failed, to find some formula with which they could produce an unending sequence of primes. Failing in this quest for an explicit formula, others began to speculate about formulas that could describe the general distribution of primes. Thus, the prime number theorem first appeared in 1798 as a conjecture by the French mathematician Adrien-Marie Legendre (Legendre, Adrien-Marie). On the basis of his study of a table of primes up to 1,000,000, Legendre stated that if x is not greater than 1,000,000, then x/(ln(x)−1.08366) is very close to π(x). This result—indeed with any constant, not just 1.08366—is essentially equivalent to the prime number theorem, which states the result for constant 0. It is now known, however, that the constant that gives the best approximation to π(x), for relatively small x, is 1. The great German mathematician Carl Friedrich Gauss (Gauss, Carl Friedrich) also conjectured an equivalent of the prime number theorem in his notebook, perhaps prior to 1800. However, the theorem was not proved until 1896, when the French mathematicians Jacques-Salomon Hadamard (Hadamard, Jacques-Salomon) and Charles de la Valée Poussin independently showed that in the limit (as x increases to infinity) the ratio x/ln(x) equals π(x). Although the prime number theorem tells us that the difference between π(x) and x/ln(x) becomes vanishingly small relative to the size of either of these numbers as x gets large, one can still ask for some estimate of that difference. The best estimate of this difference is conjectured to be given by √xln(x). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。