词条 | Jupiter |
释义 | Jupiter Roman god also called Jove, Latin Iuppiter, Iovis, or Diespiter, ![]() Throughout Italy he was worshiped on the summits of hills; thus, on the Alban Hill south of Rome was an ancient seat of his worship as Jupiter Latiaris, which was the centre of the league of 30 Latin cities of which Rome was originally an ordinary member. At Rome itself on the Capitoline Hill was his oldest temple; here there was a tradition of his sacred tree, the oak, common to the worship both of Zeus and of Jupiter, and here, too, were kept the lapides silices, pebbles or flint stones, which were used in symbolic ceremonies by the fetiales (fetial), the Roman priests who officially declared war or made treaties on behalf of the Roman state. Jupiter was not only the great protecting deity of the race but also one whose worship embodied a distinct moral conception. He is especially concerned with oaths, treaties, and leagues, and it was in the presence of his priest that the most ancient and sacred form of marriage (confarreatio) took place. The lesser deities Dius Fidius and Fides were, perhaps, originally identical and certainly were connected with him. This connection with the conscience, with the sense of obligation and right dealing, was never quite lost throughout Roman history. In Virgil's Aeneid, though Jupiter is in many ways as much Greek as Roman, he is still the great protecting deity who keeps the hero in the path of duty (pietas) toward gods, state, and family. But this aspect of Jupiter gained a new force and meaning at the close of the early Roman monarchy with the building of the famous temple on the Capitol, of which the foundations are still to be seen. It was dedicated to Iuppiter Optimus Maximus (i.e., the best and greatest of all the Jupiters), and with him were associated Juno and Minerva, in a fashion that clearly indicates a Greco-Etruscan origin, since the combination of three deities in one temple was foreign to the ancient Roman religion, while it is found in both Greece and Etruria. The temple's dedication festival fell on September 13, on which day the consuls originally succeeded to office, accompanied by the Senate and other magistrates and priests. In fulfillment of a vow made by their predecessors, the consuls offered to Jupiter a white ox, his favourite sacrifice, and, after rendering thanks for the preservation of the state during the past year, they made the same vow as that by which their predecessors had been bound. Then followed the feast of Jupiter. In later times this day became the central point of the great Roman games. When a victorious army returned home the triumphal procession passed to this temple. Throughout the Roman Republic this remained the central Roman cult; and, although Augustus' new foundations (Apollo Palatinus and Mars Ultor) were in some sense its rivals, that emperor was far too shrewd to attempt to oust Iuppiter Optimus Maximus from his paramount position; he became the protecting deity of the reigning emperor as representing the state, as he had been the protecting deity of the free republic. His worship spread over the whole empire. planet Introduction ![]() Planetary data for Jupiter Planetary data for JupiterWhen ancient astronomers named the planet Jupiter for the Roman ruler of the gods and heavens (also known as Jove), they had no idea of the planet's true dimensions, but the name is appropriate, for Jupiter is larger than all the other planets combined. It takes nearly 12 Earth years to orbit the Sun, and it rotates once about every 10 hours, more than twice as fast as Earth; its colourful cloud bands can be seen with even a small telescope. It has a narrow system of rings and more than 60 known moons, one larger than the planet Mercury and three larger than Earth's Moon. Some astronomers speculate that Jupiter's moon Europa may be hiding an ocean of warm water—and possibly even some kind of life—beneath an icy crust. Jupiter has an internal heat source; it emits more energy than it receives from the Sun. The pressure in its deep interior is so high that the hydrogen there exists in a fluid metallic state. This giant has the strongest magnetic field of any planet, with a magnetosphere so large that, if it could be seen from Earth, its apparent diameter would exceed that of the Moon. Jupiter's system is also the source of intense bursts of radio noise, at some frequencies occasionally radiating more energy than the Sun. Despite all its superlatives, however, Jupiter is made almost entirely of only two elements, hydrogen and helium, and its mean density is not much more than the density of water. ![]() Basic astronomical data Planetary data for JupiterJupiter has an equatorial diameter of about 143,000 km (88,900 miles) and orbits the Sun at a mean distance of 778 million km (483 million miles). The table (Planetary data for Jupiter) shows additional physical and orbital data for Jupiter. Of special interest are the planet's low mean density of 1.33 grams per cubic cm—in contrast with Earth's 5.52 grams per cubic cm—coupled with its large dimensions and mass and short rotation period. The low density and large mass indicate that Jupiter's composition and structure are quite unlike those of Earth and the other inner planets, a deduction that is supported by detailed investigations of the giant planet's atmosphere and interior. Three rotation periods, all within a few minutes of each other, have been established. The two periods called System I (9 hours 50 minutes 30 seconds) and System II (9 hours 55 minutes 41 seconds) are mean values and refer to the speed of rotation at the equator and at higher latitudes, respectively, as exhibited by features observed in the planet's visible cloud layers. Jupiter has no solid surface; the transition from the gaseous atmosphere to the fluid interior occurs gradually at great depths. Thus the variation in rotation period at different latitudes does not imply that the planet itself rotates with either of these mean velocities. In fact, the true rotation period of Jupiter is System III (9 hours 55 minutes 29 seconds). This is the period of rotation of Jupiter's magnetic field, first deduced from Earth-based observations at radio wavelengths (see below Radio emission (Jupiter)) and confirmed by direct spacecraft measurements. This period, which has been constant for 30 years of observation, applies to the massive interior of the planet, where the magnetic field is generated. The atmosphere The clouds and the Great Red Spot ![]() ![]() The close-up views of Jupiter transmitted to Earth from the Voyager spacecraft revealed a variety of cloud forms, including many elliptical features reminiscent of cyclonic and anticyclonic storm systems on Earth. All these systems are in motion, appearing and disappearing on time scales that vary with their sizes and locations. Also observed to vary are the pastel shades of various colours present in the cloud layers—from the tawny yellow that seems to characterize the main layer, through browns and blue-grays, to the well-known salmon-coloured Great Red Spot, Jupiter's largest, most prominent, and longest-lived feature. Chemical differences in cloud composition, which astronomers presume to be the cause of the variations in colour, evidently accompany the vertical and horizontal segregation of the cloud systems. Jovian meteorology can be compared with the global circulation of Earth's atmosphere. On Earth huge spiral cloud systems often stretch over many degrees of latitude and are associated with motion around high- and low-pressure regions. These cloud systems are much less zonally confined than the cloud systems on Jupiter and move in latitude as well as longitude. Local weather on Earth is often closely tied to the local environment, which in turn is determined by the varied nature of the planet's surface. ![]() ![]() Nature of the Great Red Spot ![]() The rotation period of the Great Red Spot around the planet does not match any of Jupiter's three rotation periods. It shows a variability that has not been successfully correlated with other Jovian phenomena. Voyager observations revealed that the material within the spot circulates in a counterclockwise direction once every seven days, corresponding to superhurricane-force winds of 400 km (250 miles) per hour at the periphery. The Voyager images also recorded a large number of interactions between the Great Red Spot and much smaller disturbances moving in the current at the same latitude. The interior of the spot is remarkably tranquil, with no clear evidence for the expected upwelling (or divergence) of material from lower depths. The Great Red Spot, therefore, appears to be a huge anticyclone, a vortex or eddy whose diameter is presumably accompanied by a great depth that allows the feature to reach well below and well above the main cloud layers. Its extension above the main clouds is manifested by lower temperatures and by less gas absorption above the Great Red Spot than at neighbouring regions on the planet. Its lower extension remains to be observed. Cloud composition The clouds that are seen through Earth-based telescopes and recorded in pictures of Jupiter are formed at different altitudes in the planet's atmosphere. Except for the top of the Great Red Spot, the white clouds are the highest, with cloud-top temperatures of about 120 kelvins (kelvin) (K; −240 °F, or −150 °C). These white clouds consist of frozen ammonia crystals and are thus analogous to the water-ice cirrus clouds in Earth's atmosphere. The tawny clouds that are widely distributed over the planet occur at lower levels. They appear to form at a temperature of about 200 K (−100 °F, −70 °C), which suggests that they probably consist of condensed ammonium hydrosulfide and that their colour may be caused by other ammonia-sulfur compounds such as ammonium polysulfides. Sulfur compounds are invoked as the likely colouring agents because sulfur is relatively abundant in the cosmos and hydrogen sulfide is notably absent from Jupiter's atmosphere above the clouds. Jupiter is composed primarily of hydrogen and helium. Under equilibrium conditions—allowing all the elements present to react with one another at an average temperature for the visible part of the Jovian atmosphere—the abundant chemically active elements are all expected to combine with hydrogen. Thus it was surmised that methane, ammonia, water, and hydrogen sulfide would be present. Except for hydrogen sulfide, all these compounds have been found by spectroscopic observations from Earth. The apparent absence of hydrogen sulfide can be understood if it combines with ammonia to produce the postulated ammonium hydrosulfide clouds. Indeed, hydrogen sulfide was detected at lower levels in the atmosphere by the Galileo probe. The absence of detectable hydrogen sulfide above the clouds, however, suggests that the chemistry that forms coloured sulfur compounds (if indeed there are any) must be driven by local lightning discharges rather than by ultraviolet radiation from the Sun. In fact, the causes of the colours on Jupiter remain undetermined, although investigators have developed several viable hypotheses. Sulfur compounds have also been proposed to explain the dark brown coloration of the ammonia clouds detected at still lower levels, where the measured temperature is 260 K (8 °F, −13 °C). These clouds are seen through what are apparently holes in the otherwise ubiquitous tawny clouds. They appear bright in pictures of Jupiter that are made from its thermal radiation detected at a wavelength of five micrometres, consistent with their higher temperatures. The colour of the Great Red Spot has been attributed to the presence of complex organic molecules, red phosphorus, or yet another sulfur compound. Laboratory experiments support these ideas, but there are counterarguments in each case. Dark regions occur near the heads of white plume clouds near the planet's equator, where temperatures as high as 300 K (80 °F, 27 °C) have been measured. Despite their blue-gray appearance, these so-called hot spots have a reddish tint. They appear to be cloud-free regions—hence the ability to “see” into them to great depths and measure high temperatures—that exhibit a blue colour (from Rayleigh scattering of sunlight) overlain with a thin haze of reddish material. That these so-called hot spots occur only near the equator, the elliptical dark brown clouds only near latitude 18° N, and the most prominent red colour on the planet only in the Great Red Spot implies a localization of cloud chemistry that is puzzling in such a dynamically active atmosphere. At still lower depths in the atmosphere, astronomers expect to find water-ice clouds and water-droplet clouds, both consisting of dilute solutions of ammonium hydroxide. Nevertheless, when the probe from the Galileo spacecraft entered Jupiter's atmosphere on December 7, 1995, it failed to find these water clouds, even though it survived to a pressure level of 22 bars—nearly 22 times sea-level pressure on Earth—where the temperature was more than 400 K (260 °F, 130 °C). In fact, the probe also did not sense the upper cloud layers of ammonia and ammonium hydrosulfide. Unfortunately for studies of Jovian cloud physics, the probe had entered the atmosphere over a hot spot, where clouds were absent, presumably caused by a large-scale meteorological phenomenon related to the downdrafts observed in some storms on Earth. Atmospheric (atmosphere) characteristics Proportions of constituents Prior to the deployment of the Galileo probe, astronomers had relied upon studies of the planet's spectrum to provide information about the composition, temperature, and pressure of the atmosphere. In the particular version of this technique known as absorption spectroscopy, light or thermal radiation from the planet is spread out in wavelengths (colours, in visible light, as in a rainbow) by the dispersing element in a spectrograph. The resulting spectrum contains discrete intervals, or lines, at which energy has been absorbed (absorption) by the constituents of the planet's atmosphere. By measuring the exact wavelengths at which this absorption takes place and comparing the results with spectra of gases obtained in the laboratory, astronomers can identify the gases in Jupiter's atmosphere. Atmospheric abundances for JupiterThe presence of methane and ammonia in Jupiter's atmosphere was deduced in this way in the 1930s, while hydrogen was detected for the first time in 1960. (Although 500 times more abundant than methane, molecular hydrogen has much weaker absorption lines because it interacts only very weakly with electromagnetic waves.) Subsequent studies led to a growing list of new constituents, including the discovery of the arsenic compound arsine in 1990. The table (Atmospheric abundances for Jupiter) includes a list of Jupiter's atmospheric constituents and their abundances as determined by Earth-based, spacecraft, and atmospheric probe observations as of 2002. If the condition of chemical equilibrium held rigorously in Jupiter's atmosphere, one would not expect to find molecules such as carbon monoxide or phosphine in the abundances measured. Neither would one expect the traces of acetylene, ethane, and other hydrocarbons that have been detected in the stratosphere. Evidently, there are sources of energy other than the molecular kinetic energy corresponding to local temperatures. Solar (solar radiation) ultraviolet radiation is responsible for the breakdown of methane, and subsequent reactions of its fragments produce acetylene and ethane. In the convective region of the atmosphere, lightning discharges (observed by the Voyager and Galileo spacecraft) contribute to these processes. Still deeper, at temperatures around 1,200 K (1,700 °F, 930 °C), carbon monoxide is made by a reaction between methane and water vapour. Vertical mixing must be sufficiently strong to bring this gas up to a region where it can be detected from outside the atmosphere. Some carbon monoxide, carbon dioxide, and water in the atmosphere come from icy particles bombarding the planet from space. Galileo's probe carried a mass spectrometer (mass spectrometry) that detected the constituent atoms and molecules in the atmosphere by first charging them and then spreading them out with a magnetic field according to their masses. This technique had the advantage that it could measure noble gases like helium and neon that do not interact with visible and infrared light. As the probe descended through the atmosphere on its parachute, its spectrometer also studied variations in abundance with altitude. This experiment finally detected the previously missing hydrogen sulfide, which was found to be present even lower in the atmosphere than anticipated. Evidently this cloud-forming gas, like ammonia and water vapour, was depleted in the upper part of the hot spot by the aforementioned downdraft. It was not possible to measure oxygen, because this element is bound up in water, and the probe did not descend into the hot spot deeply enough to reach the atmospheric region where this condensable vapour is well-mixed. Atmospheric abundances for JupiterThe elemental abundances in Jupiter's atmosphere can be compared with the composition of the Sun (see the right two columns of the table (Atmospheric abundances for Jupiter)). If, like the Sun, the planet had formed by simple condensation from the primordial solar nebula that is thought to have given birth to the solar system, their elemental abundances should be the same. A surprising result from the Galileo probe was that all the globally mixed elements that it could measure in the Jovian atmosphere showed the same approximately threefold enrichment of their values in the Sun, relative to hydrogen. This has important implications for the formation of the planet (see below Origin of the Jovian system (Jupiter)). Spectroscopy from Earth reveals a large spread in the values of other elements (phosphorus, germanium, and arsenic) not measured by the probe. The abundances of the gases from which these elemental abundances are derived depend on dynamical phenomena in Jupiter's atmosphere—principally chemical reactions and vertical mixing. The significance of the helium and neon depletions is discussed in the section The interior (Jupiter), below. Another difference with solar values is indicated by the presence of deuterium on Jupiter. This heavy isotope of hydrogen has disappeared from the Sun as a result of nuclear reactions in the solar interior. Because no such reactions occur on Jupiter, the ratio of deuterium to hydrogen there should be identical to the ratio of those isotopes in the cloud of interstellar gas and dust that collapsed to form the solar system 4.6 billion years ago. Since deuterium was made in the big bang (big-bang model) that is postulated to have begun the expansion of the universe, a still more accurate measurement of the deuterium/hydrogen ratio on Jupiter would allow the calibration of expansion models. temperature and pressure ![]() ![]() The increase in temperature above the tropopause is known as an inversion, because temperature normally decreases with height. The inversion is caused by the absorption of solar energy at these altitudes by gases and aerosol particles. A similar inversion is caused in Earth's atmosphere by the presence of ozone (see ozonosphere). Other likely atmospheric constituents Atmospheric abundances for JupiterThe list of atmospheric abundances in the table (Atmospheric abundances for Jupiter) is certainly not complete. For example, astronomers expect monosilane (silane) to be present in the deep atmosphere, along with many other exotic species. Other nonequilibrium species should occur in the higher regions, accessible to future atmospheric probes, as a result of chemical reactions driven by lightning discharges or solar ultraviolet radiation, or at the poles (where, for example, benzene has been detected) by the precipitation of charged particles. The formation of complex organic molecules in Jupiter's atmosphere is of great interest in the study of the origin of life. The initial chemical processes that gave rise to living organisms on Earth may have occurred in transient microenvironments that resembled the present chemical composition of Jupiter, although without the enormous amounts of hydrogen and helium. Thus, Jupiter may well represent a vast natural laboratory in which the initial steps toward the origin of life are being pursued again and again. Determining how complex prelife chemical processes can become under such conditions constitutes one of the most fascinating problems confronting any program of space exploration. Collision with a comet ![]() Radio emission Jupiter was the first planet found (in 1955) to be a source of radiation at radio (radio and radar astronomy) wavelengths (see radio and radar astronomy). The radiation was recorded at a frequency of 22 megahertz (corresponding to a wavelength of 13.6 metres, or 1.36 decametres) in the form of noise bursts with peak intensities sometimes great enough to make Jupiter the brightest source in the sky at this wavelength, except for the Sun during its most active phase. The bursts of radio noise from three distinct areas constituted the first evidence for a Jovian magnetic field. Subsequent observations at shorter (decimetre) wavelengths revealed that Jupiter is also a source of steady radio emission. It has become customary to refer to these two types of emission in terms of their characteristic wavelengths—decametre radiation and decimetre radiation. ![]() The intermittent radio emission at the decametre wavelengths has been studied from Earth in the accessible range of 3.5–39.5 megahertz. Free of Earth's ionosphere, which blocks lower frequencies from reaching the surface, the radio-wave experiment on the Voyager spacecraft was able to detect emissions from Jupiter down to 60 kilohertz, corresponding to a wavelength of 5 km. The strength of the radio signal and the frequency of noise storms show a marked time dependence that led to the early detection of three “sources,” or emitting regions. The System III rotational period was initially defined through the periodicity of these sources. The decametre noise storms are greatly affected by the position of Jupiter's moon Io in its orbit. For one source, events are much more likely to occur when Io is 90° from the position in which Earth, Jupiter, and Io are in a straight line (known as superior geocentric conjunction) than otherwise. The noise sources appear to be regions that lie in the line of sight toward the visible disk of the planet (unlike the nonthermal decimetric radiation). The most promising explanation of the effect of the orbital motion of Io on noise storms relates the emission to a small region of space linked to Io by magnetic field lines (a flux tube) that move with Io. Electrons moving in spirals around the magnetic field lines could produce the observed radiation. Interactions between these electrons and the Jovian ionosphere are expected and indeed were observed by the Voyager and Galileo spacecraft. The “footprint” of Io's flux tube on Jupiter's upper atmosphere can even be observed from Earth as a glowing spot associated with Jupiter's polar auroras. The magnetic field and magnetosphere The nonthermal radio emissions described above are the natural result of trapped charged particles interacting with Jupiter's magnetic field and ionosphere. Interpretation of these observations led to a definition of the basic characteristics of the planet's magnetic field and magnetosphere that was shown to be remarkably accurate by direct exploration of the vicinity of Jupiter by the Pioneer and Voyager spacecraft. The basic magnetic field of the planet is dipolar in nature, generated by a hydromagnetic dynamo that is driven by convection within the electrically conducting outer layers of Jupiter's interior. The magnetic moment is 19,000 times greater than Earth's, leading to a field strength at the equator of 4.3 gauss, compared with 0.3 gauss at Earth's surface. The axis of the magnetic dipole is offset by a tenth of Jupiter's equatorial radius of 71,500 km (44,400 miles) from the planet's rotational axis, to which it is indeed inclined by 10°. The orientation of the Jovian magnetic field is opposite to the present orientation of Earth's field, such that a terrestrial compass taken to Jupiter would point south. The magnetic field dominates the region around Jupiter in the shape of an extended teardrop. The round side of the teardrop faces the Sun, where the Jovian field repels the solar wind, forming a bow shock at a distance of about 3 million km (1.9 million miles) from the planet. Opposite the Sun, an immense magnetotail stretches out to the orbit of Saturn, a distance of 650 million km (404 million miles), which is almost as far as Jupiter's distance from the Sun. These dimensions make Jupiter's magnetosphere the largest permanent structure in the solar system, dwarfing the Sun's diameter of 1.4 million km (870,000 miles). Within this huge region, the most striking activity is generated by the moon Io, whose influence on the decametric radiation is discussed in the section above. An electric current of approximately five million amperes flows in the magnetic flux tube linking Jupiter and Io. This satellite is also the source of a toroidal cloud of ions, or plasma, that surrounds its orbit. The energy to power this huge magnetosphere comes ultimately from the planet's rotation, which must accordingly be slowing down at an immeasurably small rate. Charged particles such as electrons that are spiraling along the magnetic field lines are forced to move around the planet with the same speed as the field and, hence, with the rotation period of the planet itself. That is why radio astronomers on Earth were able to deduce the System III rotation period long before any spacecraft measured it directly. This trapping of charged particles by the Jovian magnetic field means that the ions shed by Io in its orbit move with the System III period of nearly 10 hours rather than the 421/2 hours that Io takes to revolve around Jupiter. Thus, Io's plasma wake precedes the moon in its orbit about Jupiter. The auroras (aurora) ![]() ![]() The interior The atmosphere of Jupiter constitutes only a very small fraction of the planet, much as the skin of an apple compares with its contents. Because nothing can be directly observed below this thin outer layer, indirect conclusions are drawn from the evidence in order to determine the composition of the interior of Jupiter. The observed quantities with which astronomers can work are the atmospheric temperature and pressure, mass, radius, shape, rate of rotation, heat balance, and perturbations (perturbation) of satellite orbits and spacecraft trajectories. From these can be calculated the ellipticity—or deviation from a perfect sphere—of the planet and its departure from an ellipsoidal shape. These latter quantities may also be predicted using theoretical descriptions, or models, for the internal distribution of material. Such models can then be tested by their agreement with the observations. The basic difficulty in constructing a model that will adequately describe the internal conditions for Jupiter is the absence of extensive laboratory data on the properties of hydrogen and helium at pressures and temperatures that would exist near the centre of this giant planet. The central temperature is estimated to be close to 25,000 K (44,500 °F, 24,700 °C), to be consistent with an internal source of heat that allows Jupiter to radiate about twice as much energy as it receives from the Sun. The central pressure is in the range of 50–100 million atmospheres (about 50–100 megabars). At such tremendous pressures hydrogen is expected to be in a metallic state. Despite the problems posed in establishing the properties of matter under these extreme conditions, the precision of the models has improved steadily. Perhaps the most significant early conclusion from these studies was the realization that Jupiter cannot be composed entirely of hydrogen; if it were, it would have to be considerably larger than it is to account for its mass. On the other hand, hydrogen must predominate, constituting at least 70 percent of the planet by mass, regardless of form—gas, liquid, or solid. The Galileo probe measured a proportion for helium of 24 percent by mass in Jupiter's upper atmosphere, compared with the 28 percent predicted if the atmosphere had the same composition as the original solar nebula. Because the planet as a whole should have that original composition, astronomers have concluded that some helium that was dissolved in the fluid hydrogen in the planet's interior has precipitated out of solution and sunk toward the planet's centre, leaving the atmosphere depleted of this gas. Evidently it has taken much of the neon with it. This precipitation is persisting as the planet continues to cool down. Current models agree on a transition from molecular to metallic hydrogen at approximately one-fourth of the distance down toward Jupiter's centre. It should be stressed that this is not a transition between a liquid and a solid but rather between two fluids with different electrical properties. In the metallic state the electrons are no longer bound to their nuclei, thus giving hydrogen the conductivity of a metal. No solid surface exists in any of these models, although most (but not all) models incorporate a dense core with a radius of 0.03–0.1 that of Jupiter (0.33–1.1 the radius of Earth). Atmospheric abundances for JupiterThe source of internal heat has not been completely resolved. The currently favoured explanation invokes a combination of the gradual release of primordial heat left from the planet's formation and the liberation of thermal energy from the precipitation of droplets of helium in the planet's deep interior, as is also known to occur on Saturn. The lower helium abundance in Jupiter's atmosphere relative to the Sun (see table (Atmospheric abundances for Jupiter)) supports this latter deduction. The first process is simply the cooling phase of the original “collapse” that converted potential energy to thermal energy at the time when the planet accumulated its complement of solar nebula gas (see below Origin of the Jovian system (Jupiter)). Jupiter's moons and ring The first objects in the solar system discovered by means of a telescope—by Galileo in 1610—were the four brightest moons of Jupiter, now called the Galilean satellites (Jupiter). The fifth known Jovian moon, Amalthea, was also discovered by visual observation—by Edward Emerson Barnard (Barnard, Edward Emerson) in 1892. All the other known satellites were found in photographs or electronic images taken with Earth-based telescopes or by the cameras on the Voyager spacecraft. Jupiter's multicomponent ring was detected in Voyager images in 1979. Moons of JupiterData for the known Jovian moons are summarized in the table (Moons of Jupiter). Roman numerals are assigned to the first 16 known moons in order of their discovery. The orbits of the inner eight moons have low eccentricities and low inclinations; i.e., the orbits are all nearly circular and in the plane of the planet's equator. Such moons are called “regular.” The orbits of the dozens of moons found beyond Callisto have much higher inclinations and eccentricities, making them “irregular.” The two innermost moons, Metis and Adrastea, are intimately associated with Jupiter's ring system, as sources of the fine particles and as gravitationally controlling “shepherds.” Amalthea and Thebe also contribute to the ring system by producing very tenuous gossamer rings slightly farther from the planet. There may well be additional, undiscovered small moons close to Jupiter. There almost certainly are more distant irregular moons than those so far detected. The Galilean satellites Galileo proposed that the four Jovian moons he discovered in 1610 be named the Medicean stars, in honour of his patron, Cosimo II de' Medici (Cosimo II), but they soon came to be known as the Galilean satellites in honour of their discoverer. Galileo regarded their existence as a fundamental argument in favour of the Copernican model (Copernican system) of the solar system, in which the planets orbit the Sun. Their orbits around Jupiter were in flagrant violation of the Ptolemaic system, in which all celestial objects must move around Earth. In order of increasing distance from the planet, these satellites are called Io, Europa, Ganymede, and Callisto, for figures closely associated with Jupiter in Greek mythology. The names were assigned by the German astronomer Simon Marius (Marius, Simon), Galileo's contemporary and rival, who likely discovered the satellites independently. There proved to be a particular aptness in the choice of Io's name: Io—“the wanderer” (Greek iōn, “going”)—has an indirect influence on the ionosphere of Jupiter, as discussed above. ![]() Callisto ![]() In addition to the predominant water ice, solid carbon dioxide is present on the surface, and an extremely tenuous carbon dioxide atmosphere is slowly escaping into space. Other trace surface constituents are hydrogen peroxide, probably produced from the ice by photochemical reactions driven by solar ultraviolet radiation; sulfur and sulfur compounds, probably coming from Io; and organic compounds that may have been delivered by cometary impacts. Callisto has a weak magnetic field induced by Jupiter's field that may imply the existence of a layer of liquid water below its icy crust. Ganymede ![]() Europa ![]() Models for the differentiated interior suggest the presence of an iron-rich core surrounded by a silicate mantle surmounted by an icy crust some 150 km (90 miles) thick. This moon possesses both induced and intrinsic magnetic fields. Slightly mottled regions on the surface have been found to contain salt deposits, suggesting evaporation of water from a reservoir below the crust. Europa's frozen surface is crisscrossed with dark and bright stripes and curvilinear ridges and grooves. Spatter cones along some of the grooves again suggest fluid eruptions from below. The relief is extremely low, with ridge heights perhaps a few hundred metres at most. Europa thus has the smoothest surface of any solid body examined in the solar system thus far. Traces of sulfur, sulfur compounds, hydrogen peroxide, and organic compounds have been identified on the surface. The major open question is whether there is a global ocean of liquid water beneath Europa's ice, warmed by the release of tidal energy in Europa's interior. The possibility of such an ocean arose from Voyager data, and high-resolution Galileo images suggested fluid activity near the surface. In addition, explanation of Europa's induced magnetic field appears to require an interior, electrically conducting fluid medium, implying a salt-containing liquid water layer at some depth beneath the surface ice. If this ocean and its required source of heat exist, the possible presence of at least microbial life-forms must be admitted (see the article extraterrestrial life). Io ![]() ![]() ![]() Other satellites ![]() Moons of JupiterBefore the turn of the 21st century, eight outer moons were known, comprising two distinct orbital families (as can be seen in the table (Moons of Jupiter)). The more distant group—made up of Ananke, Carme, Pasiphae, and Sinope— has retrograde orbits around Jupiter. The closer group—Leda, Himalia, Lysithea, and Elara—has prograde orbits. (In the case of these moons, retrograde motion is in the direction opposite to Jupiter's spin and motion around the Sun, which are counterclockwise as viewed from above Jupiter's north pole, whereas prograde, or direct, motion is in the same direction.) In 1999 astronomers began a concerted effort to find new Jovian satellites using highly sensitive electronic detectors that allowed them to detect fainter—and hence smaller—objects. When in the next few years they discovered a host of additional outer moons, they recognized that the two-family division was an oversimplification. There must be well more than 100 small fragments orbiting Jupiter that can be classified into several different groups according to their orbits. Each group apparently originated from an individual body that was captured by Jupiter and then broke up. The captures could have occurred near the time of Jupiter's formation when the planet was itself surrounded by a nebula that could slow down objects that entered it. These small moons may be related to the so-called Trojan asteroids (Trojan planets), two groups of minor planets that share Jupiter's orbit. The Trojans occupy regions 60° ahead of and behind the position of the planet in its orbit. These regions are the L4 and L5 equilibrium points in Lagrange's solution to the three-body problem (see celestial mechanics: The three-body problem (celestial mechanics)). The ring ![]() ![]() The presence of micrometre-size particles in the ring requires a source, and the association of the ring boundaries with the four moons makes the source clear. The ring particles are generated by impacts on these moons (and on still smaller bodies within the main ring) by micrometeoroids, cometary debris, and possibly volcanically produced material from Io. Some of the finest particles are electrically charged and respond to the rocking motion of the Jovian magnetic field as the planet rotates. Origin of the Jovian system Explaining the origin of Jupiter and its satellites is part of the problem of explaining the origin of the solar system (solar system). Current thinking favours the gradual development of the Sun and planets from a huge cloud of gas and dust containing gravitational instabilities that caused the cloud to collapse. Early history of Jupiter Atmospheric abundances for JupiterGiven the planet's large proportion of hydrogen and its huge mass, it has been traditional to assume that Jupiter formed by condensation from the primordial solar nebula. This hypothesis implies that the elements should all be present on Jupiter in the same proportions that they occur in the Sun. However, the most recent evidence (see table (Atmospheric abundances for Jupiter)) indicates that the elemental proportions on Jupiter differ from the solar values. Atmospheric abundances for JupiterCurrent models for Jupiter's origin suggest instead that a solid core of about 10 Earth masses formed first as a result of the accretion of icy planetesimals (planetesimal). This core would have developed an atmosphere of its own as the planetesimals released gases during accretion. As the mass of the core increased, it would have become capable of attracting gases from the surrounding solar nebula, thus accumulating the huge hydrogen-helium envelope that constitutes Jupiter's atmosphere and fluid mantle. The accumulating envelope would have mixed with the outgassed atmosphere from the core. Thus, the presently observed enrichment of the most abundant heavy elements in this envelope, compared with solar values (see table (Atmospheric abundances for Jupiter)), reflects the concentration of such elements in the core. The mass spectrometer on the Galileo probe (see above The atmosphere (Jupiter)) showed that these heavy elements are enriched by the same factor of about three. For this enrichment to include volatile substances like argon and molecular nitrogen requires that the icy planetesimals must have formed at temperatures of 30 K (−400 °F, −240 °C) or less. Just how this happened remains a puzzle, and its solution may ultimately help explain the presence of giant planets (planet) that have been detected very close to their stars in other planetary systems. Early history of the satellites The inner eight moons of Jupiter are commonly thought to have originated in much the same way as the planet itself. Just as the primordial solar nebula is believed to have broken up into accreting planetesimals, which became the planets, and a central condensation, which became the Sun, the accumulation of material into a protoplanetary cloud at Jupiter's orbit ultimately led to the formation of the planet and its inner moons. The analogy goes further. The high temperature of the forming Jupiter apparently prevented volatile substances from condensing at the distances of the innermost moons. Hence, Ganymede and Callisto, the most distant of the inner eight moons, represent the volatile-rich outer bodies in this system. The origin of the numerous small outer moons, with their orbits of high eccentricities and inclinations, is thought to be quite different. They are members of the population of irregular satellites in the solar system and are most likely captured objects. Their ultimate origin, however, remains unclear. The parent bodies of these moons may have first formed in the outer nebula of Jupiter, strayed away, and then been recaptured; alternately, they may have formed independently in the solar nebula itself and then been captured. In either case, the capture process apparently caused the parent bodies to break up, forming the debris observed today as the outer irregular moons. Ongoing studies of these objects and their possible relatives among the Trojan asteroids (Trojan planets) may provide the answer to their origin. Additional Reading The Jovian system—the planet Jupiter and its moons, magnetosphere, and rings—is discussed in detail and compared with the other giant planets in (in order of increasing difficulty) J. Kelly Beatty, Carolyn Collins Petersen, and Andrew Chaikin, The New Solar System, 4th ed. (1999); David Morrison and Tobias Owen, The Planetary System, 3rd ed. (2003); and Imke de Pater and Jack J. Lissauer, Planetary Sciences (2001). A comprehensive, popular-level review of knowledge of the Jovian system, including early results from the Galileo space probe, is Reta Beebe, Jupiter: The Giant Planet, 2nd ed. (1997). Jupiter's moons are discussed in the context of all the moons of the outer solar system in David A. Rothery, Satellites of the Outer Planets: Worlds in Their Own Right, 2nd ed. (1999). Detailed descriptions of the Galileo mission and its findings are provided in David M. Harland, Jupiter Odyssey: The Story of NASA's Galileo Mission (2000); and Daniel Fischer, Mission Jupiter: The Spectacular Journey of the Galileo Spacecraft (2001). The original reference for visual observations of Jupiter with telescopes of moderate size is Bertrand M. Peek, The Planet Jupiter, rev. by Patrick Moore (1981). A more recent account that includes results from the Voyager space probes is John H. Rogers, The Giant Planet Jupiter (1995). Details regarding the Voyager missions may be found in David Morrison and Jane Samz, Voyage to Jupiter (1980). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。