词条 | law of large numbers |
释义 | law of large numbers statistics in statistics, the theorem that, as the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean. The law of large numbers was first proved by the Swiss mathematician Jakob Bernoulli (Bernoulli, Jakob) in 1713. He and his contemporaries were developing a formal probability theory with a view toward analyzing games of chance. Bernoulli envisaged an endless sequence of repetitions of a game of pure chance with only two outcomes, a win or a loss. Labeling the probability of a win p, Bernoulli considered the fraction of times that such a game would be won in a large number of repetitions. It was commonly believed that this fraction should eventually be close to p. This is what Bernoulli proved in a precise manner by showing that, as the number of repetitions increases indefinitely, the probability of this fraction being within any prespecified distance from p approaches 1. There is also a more general version of the law of large numbers for averages, proved more than a century later by the Russian mathematician Pafnuty Chebyshev (Chebyshev, Pafnuty Lvovich). ![]() ![]() |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。