词条 | liquid crystal display |
释义 | liquid crystal display electronics Introduction electronic display device that operates by applying a varying electric voltage to a layer of liquid crystal, thereby inducing changes in its optical properties. LCDs are commonly used for portable electronic games, as viewfinders for digital cameras and camcorders, in video projection systems, for electronic billboards, as monitors for computers, and in flat-panel televisions. Electro-optical effects in liquid crystals ![]() ![]() The optical properties of liquid crystals depend on the direction light travels through a layer of the material. An electric field (induced by a small electric voltage) can change the orientation of molecules in a layer of liquid crystal and thus affect its optical properties. Such a process is termed an electro-optical effect, and it forms the basis for LCDs. For nematic LCDs, the change in optical properties results from orienting the molecular axes either along or perpendicular to the applied electric field, the preferred direction being determined by the details of the molecule's chemical structure. Liquid crystal materials that align either parallel or perpendicular to an applied field can be selected to suit particular applications. The small electric voltages necessary to orient liquid crystal molecules have been a key feature of the commercial success of LCDs; other display technologies have rarely matched their low power consumption. Twisted nematic displays The first LCDs became commercially available in the late 1960s and were based on a light-scattering effect known as the dynamic scattering mode. These displays were used in many watches and pocket calculators because of their low power consumption and portability. However, problems connected with their readability and the limited lifetime of their liquid crystal materials led to the development during the 1970s of twisted nematic (TN) displays, variants of which are now available in computer monitors and flat-panel televisions. ![]() ![]() More-complex images can be displayed using a technique known as passive-matrix addressing (described below). However, even with this technique, 90° TN displays can produce images consisting of only about 20 rows of picture elements, known as pixels. Supertwisted nematic displays It was discovered in the early 1980s that increasing the twist angle of a liquid crystal cell to about 180–270° (with 240° being fairly common) allows a much larger number of pixel rows to be used, with a consequent increase in the complexity of images that can be displayed. These supertwisted nematic (STN) displays achieve their high twist by using a substrate plate configuration similar to that of TN displays but with an additional optically active compound, known as a chiral dopant, dissolved in the liquid crystal. The display is activated using passive-matrix addressing, for which the pixels are arranged in rows and columns; selective application of a voltage to a particular row and column will activate the corresponding element at their intersection. The supertwist causes a larger relative change in optical transmission with applied voltage, compared with 90° twisted cells. This reduces the illumination of unwanted pixels, so-called “cross talk,” which controls the number of rows that can be activated in passive-matrix addressing. Colour STN displays have been produced for computer monitors, but they are being replaced in the market by more modern thin-film transistor TN displays (described below), which have better viewing angles, colour, and response speed. Monochrome STN displays are still widely used in mobile telephones and other devices that do not require colour. Thin-film transistor displays ![]() ![]() Introduced at the end of the 1980s, TFT displays are now widely used in portable computers and as space-saving flat-screen monitors for personal computers. Some aspects of TFTs, such as viewing angle, speed, and the manufacturing cost of large-area displays, have slowed their full commercial exploitation. Nevertheless, these LCDs are increasingly entering the home television market. Other transmissive nematic displays In recent years a number of alternatives to the 90° TN have been commercialized for use on active-matrix substrates. For example, in-plane switching (IPS) displays operate by applying a switching voltage to electrodes on a single substrate to untwist the liquid crystal. IPS displays have a viewing angle intrinsically superior to that of TFT TNs; however, the requirement for more electrode circuitry on their substrate can result in a less efficient use of the backlight. Twisted vertically aligned nematic (TVAN) displays utilize molecules that tend to orient with their long axes perpendicular to the direction of an applied electric field. A small quantity of an optically active material is added to the liquid crystal, causing it to adopt a twisted configuration upon the application of voltage. TVAN displays can show very high contrast and good viewing-angle characteristics. Reflective displays The backlight of LCDs typically accounts for more than 80 percent of the display's power consumption. For mobile complex displays, battery lifetime is of great importance, and clearly the development of products that can be viewed in ambient light without recourse to backlighting is highly desirable. Such displays are known as reflective displays, and they can be realized in a number of ways. Some commercial reflective displays operate much like the transmissive STN. The liquid crystal again acts as an electro-optical layer between two polarizers. In place of a backlight, however, an aluminum mirror is used to reflect ambient light back toward the viewer when the liquid crystal is switched to a bright (or transmissive) state. Polarizers absorb about 50 percent of unpolarized light passing through them, and the removal of one or both polarizers can increase the brightness of the reflective displays. Indeed, active-matrix devices with single polarizers have begun to dominate the high-quality reflective display market—for example, in mobile phones and handheld electronic games. Another type of reflective device, known as a guest-host reflective display, relies on dissolving “guest” dye molecules into a “host” liquid crystal. The dye molecules are selected to have a colour absorption that depends on their orientation. Variations in an applied electric voltage change the orientation of the host liquid crystal, and this in turn induces changes in the orientation of the dye molecules, thus changing the colour of the display. Guest-host devices may use one or no polarizers, but again they require a mirror. They can show high brightness, but generally they exhibit poorer contrast than optimized TN single-polarizer devices. Truly reflective displays (not requiring a mirror) have been manufactured using optically active liquid crystals known as chiral nematics or cholesteric liquid crystals. (The first chiral nematics were based on derivatives of cholesterol, hence the now-obsolete term cholesteric.) The molecules of such optically active liquid crystals spontaneously order into helical structures that are found to reflect light of a specific wavelength (i.e., a specific colour) that is approximately equal to the pitch of the helices. Changing the orientation of the helices by an electric field can switch the liquid crystal from a coloured reflective state to a scattering or black state. The devices have a high resolution and acceptable contrast, but they are rather slow and are typically used in static displays. Transflective displays have been developed that combine some of the features of polarizer-based reflective displays and transmissive displays. Transflective devices use a mirror that is partially reflective and partially transmissive, situated between the liquid crystal layer and a backlight. When ambient light levels are high, the backlight may be turned off and the display operated as a reflective device, saving battery power. When light levels are low, the backlight may be turned on to increase the brightness of the display. This clearly has advantages, although transflective displays by their nature represent a compromise and cannot readily match the reflectivity of a dedicated reflective display or the brightness of a transmissive device. Projection displays The LCDs used in projection systems are typically small reflective or transmissive panels illuminated by a powerful arc lamp source. A series of lenses magnifies the reflected or transmitted image and casts it onto a screen. In front-projection systems the LCD is situated on the same side of the screen as the viewer, while in rear-projection systems the screen is illuminated from behind. Projectors of higher cost and performance may use three separate LCD panels, forming separate red, green, and blue images that combine to form a coloured image on the screen. Smectic LCDs ![]() ![]() SSFLC devices have been commercialized for large passive-matrix displays, but their cost and complexity have prevented them from making any significant impact on the market. Small transmissive and reflective active-matrix SSFLC displays, however, show some promise for use as elements in projection systems or as viewfinders in digital cameras. Their fast response allows them to be used in time-sequential colour systems, in which costly colour filters are replaced by a coloured backlight that flashes red, green, and blue in rapid succession (about 100 cycles per second). For example, the liquid crystal can be switched to a transmissive state during the red and green periods and to a nontransmissive state during the blue period, with the result that the eye sees an average of red and green light, or the colour yellow. Additional Reading Two reasonably accessible textbooks for undergraduates are Pochi Yeh and Claire Gu, Optics of Liquid Crystal Displays (1999); and Birenda Bahadur (ed.), Liquid Crystals: Applications and Uses (1990). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。