词条 | 磁流体力学 |
释义 | ciliuti lixue 磁流体力学(卷名:力学) magneto-fluid mechanics 结合经典流体力学和电动力学的方法研究导电流体和磁场相互作用的学科,包括磁流体静力学和磁流体动力学两个分支。磁流体静力学研究导电流体在磁场力作用下静平衡的问题;磁流体动力学研究导电流体与磁场相互作用的动力学或运动规律。但磁流体力学通常即指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形。 导电流体有等离子体和液态金属等。等离子体是电中性电离气体,含有足够多的自由带电粒子,所以它的动力学行为受电磁力支配。宇宙中的物质几乎全都是等离子体,但对地球来说,除大气上层的电离层和辐射带是等离子体外,地球表面附近(除闪电和极光外)一般不存在自然等离子体;但可通过气体放电、燃烧、电磁激波管、相对论电子束和激光等方法产生人工等离子体(见等离子体发生器)。能应用磁流体力学处理的等离子体温度范围颇宽,从磁流体发电的几千开到受控热核反应的几亿开量级(还没有包括固体等离子体)。因此,磁流体力学同物理学的许多分支以及核能、化学、冶金、航天等技术科学都有联系。 简史 1832年M.法拉第首次提出有关磁流体力学问题。他根据海水切割地球磁场产生电动势的想法,测量泰晤士河两岸间的电位差,希望测出流速,但因河水电阻大、地球磁场弱和测量技术差,未达到目的。1937年J.F.哈特曼根据法拉第的想法,对水银在磁场中的流动进行了定量实验,并成功地提出粘性不可压缩磁流体力学流动(即哈特曼流动)的理论计算方法。1940~1948年H.阿尔文提出带电单粒子在磁场中运动轨道的“引导中心”理论(见等离子体动力学)、磁冻结定理、磁流体动力学波(即阿尔文波)和太阳黑子理论,1949年他在《宇宙动力学》一书中集中讨论了他的主要工作,推动了磁流体力学的发展。1950年S.伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束方法就是利用这个原理来约束温度高达一亿度量级的等离子体。然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。此外,1950年,N.赫罗夫森和范德胡斯特论证了有三种扰动波(即阿尔文波、快磁声波和慢磁声波)存在。 研究方法 等离子体的密度范围很宽。对于极其稀薄的等离子体,粒子间的碰撞和集体效应可以忽略,可采用单粒子轨道理论研究等离子体在磁场中的运动。对于稠密等离子体,粒子间的碰撞起主要作用,研究这种等离子体在磁场中的运动有两种方法。一是统计力学方法,即所谓等离子体动力论,它从微观出发,把气体当作正、负粒子和中性粒子的混合物,并考虑粒子之间的相互碰撞影响,用统计方法研究等离子体在磁场中的宏观运动;一是连续介质力学方法即磁流体力学,把等离子体当作连续介质(见连续介质假设)来研究它在磁场中的运动。等离子体动力论对等离子体作最基本的描述,分析深刻,而磁流体力学则是它的一种宏观近似,所以用等离子体动力论能判断磁流体力学处理实际问题的有效性。此外,等离子体动力论还可用来计算磁流体力学中的一切输运系数(如扩散、粘性、热传导和电阻系数等)并讨论它们的物理机制。但这种方法的数学分析很困难,故在处理实际问题时,应用磁流体力学比较方便,而输运系数则由实验测定或用等离子体动力学分析计算。对无碰撞的等离子体,有时也可应用流体动力学方法,例如流体粒子的无规运动速度比宏观速度小得多,即压力和温度可以忽略时,可用冷等离子体模型和方程处理等离子体在电磁场中的运动。固态等离子体和冷等离子体的模型很近似。尽管可以应用上述较简单的磁流体力学理论解决实际问题,但在稀薄气体的某些场合下,只有动力论的描述才是恰当的。例如平衡等离子体中的电子等离子体振荡所受的阻尼(即朗道阻尼)问题,是不可能用磁流体力学模型描述的,必须用动力论方法才能解决。 磁流体力学是在非导电流体力学的基础上研究导电流体中流场和磁场的相互作用的。进行这种研究必须对经典流体力学加以修正,以便得到磁流体力学基本方程组,包括考虑介质运动的电动力学方程组和考虑电磁场作用的流体力学方程组。电动力学方程组包含电导率、电容率、磁导率;流体力学方程组包含粘性系数、热导率、气体比热等物理参量。它们有时是常数,有时是其他量的函数。 磁流体力学基本方程组具有非线性且包含方程个数又多,造成求解困难。但在实际问题中往往不需要求最一般形式的方程组的解,而只需求某一特殊问题的方程组的解。因此,在利用磁流体力学基本方程组来解决种种实际问题时,可在实验或观测的基础上,建立表征研究对象主要实质的物理模型来简化基本方程组。一般应用量纲分析和相似律求得表征一个物理问题的相似准数,并简化方程,从而得到有实用价值的解。磁流体力学相似准数有雷诺数、磁雷诺数、哈特曼数(见哈特曼流动)、马赫数、磁马赫数、磁力数、相互作用数等。求解简化后的方程组不外是分析法和数值法。利用计算机技术和计算流体力学方法可以求解较复杂的问题。 磁流体力学的理论很难像普通流体力学理论那样得到充分的验证。由于在常温下可供选择的介质很少,同时需要很强的磁场才能观察到磁流体力学现象,故不易进行模拟。早期是用水银进行实验,但水银在磁场中运动时只呈现出不可压缩流体现象,而等离子体处于高温状态,现象复杂,带来许多有待研究的诊断问题(见等离子体诊断)。模拟天体大尺度的磁流体力学问题更不易在实验室中实现。所以磁流体力学的理论有的可以得到定量验证,有的只能得到定性或间接的验证。当前有关磁流体力学的实验是在各种等离子体发生器和受控热核反应装置中进行的。 研究内容 首先是建立磁流体力学基本方程组,其次是用这个方程组来解决各种问题。后者主要包括:①忽略磁场力对流体的作用,单独考虑理想导电流体运动对磁场影响的问题,或流体静止时,流体电阻对磁场影响的问题,其中包括磁冻结和磁扩散(见磁流体力学基本方程组)。②通过磁场力来考察磁场对静止导电流体或理想导电流体的约束机制。这个问题是磁流体静力学的研究范畴,对受控热核反应十分重要。磁流体静力学在天体物理中,例如在研究太阳黑子的平衡、日珥的支撑、星际间无作用力场等问题中也很重要。③研究磁场力对导电流体定常运动的影响。方程的非线性使磁流体动力学流动的数学分析复杂化,通常要用近似方法或数值法求解。对于一般的磁流体动力学流动虽然都有相应的研究,但仅少数有精确解,如哈特曼流动、库埃特流动等。它们虽然是简化情况的解,然而清晰地阐明了基本的流动规律,利用这些规律至少可以定性地讨论更复杂的磁流体动力学流动。④研究磁流体动力学波,包括小扰动波、有限振幅波和激波。了解等离子体中波(磁流体动力学波是其中一部分)的传播规律,就可以探测等离子体的某些性质。此外,激波理论在电磁激波管、天体物理和地球物理上都有重要的应用。 应用 磁流体力学主要应用于三个方面:天体物理、受控热核反应和工业。 天体物理、太阳物理和地球物理方面 宇宙中恒星和星际气体都是等离子体,而且有磁场,故磁流体力学首先在天体物理、太阳物理和地球物理中得到发展和应用。当前,关于太阳的研究课题有:太阳磁场的性质和起源,磁场对日冕、黑子、耀斑的影响。此外还有:星际空间无作用力场存在的可能性,太阳风与地球磁场相互作用产生的弓形激波,新星、超新星的爆发,地球磁场的起源,等等。 受控热核反应方面 这方面的应用有可能使人类从海水中的氘获取巨大能源。受控热核反应的目的就是把轻元素组成的气体加热到足够发生核聚变的高温,并约束它足够的时间,以使核反应产生的能量大于所消耗的能量。对氘、氚混合气来说,要求温度达到5000万到1亿开并要求粒子密度和约束时间的乘积不小于 1014秒/厘米3(劳孙条件)。 托卡马克(环形磁约束装置)在受控热核反应研究中显出优越性。美、苏和一些西欧国家各自在托卡马克的研究上取得进展,但只得到单项指标满足劳孙条件的等离子体,没有得到温度、密度和约束时间都满足劳孙条件的等离子体。磁镜、托卡马克和其他磁约束装置的运行范围都受稳定性的限制,即电流或粒子密度越大,稳定性越差,所以必须开展对等离子体中的平衡和大尺度不稳定性预测的磁流体力学研究,以期得到稳定的并充分利用磁场的托卡马克磁约束装置。 工业方面 磁流体力学除了与开发和利用核聚变能有关外,还与磁流体发电密切联系。磁流体发电的原理是用等离子体取代发电机转子,省去转动部件,这样可以把普通火力发电站或核电站的效率提高15~20%,甚至更高,既可节省能源,又能减轻污染。为了提高磁流体发电装置的热效率,必须运用磁流体力学来分析发电通道中的流动规律,传热、传质规律和电特性。研究利用煤粉作燃料的磁流体发电对产煤丰富的国家有重要意义,这种研究目前正向工业发电阶段发展。苏联已实现天然气磁流体发电。 用导电流体取代电动机转子的设备,即用磁力驱动导电流体的装置有电磁泵和磁流体力学空间推进器(见电磁推进)。电磁泵已用于核能动力装置中传热回路内液态金属的传输,冶金和铸造工业中熔融金属的自动定量浇注和搅拌,化学工业中汞、钾、钠等有害和危险流体的输送等方面。电磁推进研究用磁场力加速等离子体以期得到比化学火箭大得多的比冲。 飞行器再入大气层时,激波、空气对飞行器的摩擦使飞行器的表面附近空气受热而电离成为等离子体,因此利用磁场可以控制对飞行器的传热和阻力。但由于磁场装置过重,这种设想尚未能实现。 此外,电磁流量计、电磁制动、电磁轴承(见润滑理论、电磁激波管等也是磁流体力学在工业上应用所取得的成就。 关于低温等离子体技术,见等离子体的工业应用。 参考书目 V. C. A. Ferraro and C. Plumpton, Introduction to Magneto-fluid Mechanics, Oxford Univ. Press,London,1961. T.J.M.博伊德、J.J.桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T.J.M.Boyd and J.J.Sanderson,Plasma Dynamics,Nelson,London,1969.) M. Mitchner and C. H. Kruger Jr.,Partially Ionized Gases,John Wiley & Sons,New York,1973. Shih-I Pai, Magnetogasd ynamics, and Plasma Dynamics,Springer-Verlag,Vienna,1961. |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。