词条 | 痕量分析 |
释义 | henliang fenxi 痕量分析(卷名:矿冶) trace analysis 对一克样品中含有微克级(μg/g)、纳克级(ng/g)乃至皮克级(pg/g)元素的测定称痕量分析,用于高纯金属、半导体等的分析测定。常用的有化学光谱法、中子活化分析法、质谱法、分光光度法、原子吸收光谱法、极谱法等。根据样品的性质和元素含量、方法的可靠性、灵敏度和检测限,来选择适合的分析方法,其中以灵敏度和检测限最为重要。痕量分析的常用方法分述如下: 化学光谱法 常用于测定高纯材料中痕量杂质,对分析99.999~99.9999%纯度材料,效果好,测定下限可达μg至ng级。此法须先用液-液萃取、挥发、离子交换等技术分离主体,富集杂质,再对溶液干渣用高压电火花或交流电弧光源进行光谱测定;或在分离主体后,把溶液浓缩到2~5ml,用高频电感耦合等离子体作光源进行光谱测定。 中子活化分析法 高纯半导体材料的主要分析方法之一。用同位素中子源和小型加速器产生的通量为1012厘米-2·秒-1以上的中子流辐射被测定样品。中子与样品中的元素发生核反应,生成放射性同位素及γ射线。例如Si+n→Si+γ。用探测器和多道脉冲高度分析器来分析同位素的放射性、半衰期及γ射线能谱,就能鉴定出样品中的痕量元素。中子活化分析法的主要优点是灵敏度高于其他痕量分析方法,可在ppm或ppb的范围内测定周期表中的大部分元素;使用高分辨率的Ge(Li)半导体探测器和电子计算机可显著提高分析速度;样品用量少并不被污染和破坏;同时能分析多种元素。对于中子吸收截面非常小,产生的同位素是非放射性的、或放射性同位素的半衰期很长或很短的元素,不能用此法分析。 质谱法 利用射频火花离子源双聚焦质谱计测定高纯度材料中痕量杂质,其优点是:灵敏度高,测定下限达μg至ng级,一次可分析70多个元素。如有标样,可进行高纯金属和半导体定量分析、粉末样品或氧化物(制成电极后需镀导电高纯银膜)的分析;如无标样,采用加入内标元素的方法也可进行定量分析。若粉末样品或溶液样品的分析与同位素稀释法技术结合,可不需标样进行定量分析,并可提高分析的灵敏度和准确度。 分光光度法 用被测定元素的离子同无机或有机试剂形成显色的络化物,元素的测定下限可达μg至ng级。在无机痕量分析中还常用化学荧光(发光)法测定某些元素,例如Ce、Tb、Ca、Al等。新合成有机荧光试剂,如吡啶-2,6-二羧酸,钙黄绿素等,都有良好的选择性和灵敏度,测定下限小于0.01μg。 原子吸收光谱法 有较好的灵敏度和精密度,广泛应用于测定高纯材料中的痕量元素。用火焰原子吸收光谱进行分析时,除用空气-C2H2火焰外,还可用N2O-C2H2火焰以扩大分析元素的数目。近年来,又发展出无火焰原子吸收光谱法,把石墨炉原子仪器应用于痕量元素分析。原子吸收光谱分析由于化学组分干扰产生系统误差,也由于光散射和分子吸收产生的背景信号干扰,短波区比长波区大;无火焰法比火焰法严重。为提高痕量元素测定的可靠性,采用连续光源氘灯和碘钨灯等以及塞曼效应技术校正背景,并与阶梯单色仪相结合以改进波长的调制,效果更好。此外,痕量分析中还应用原子荧光技术。 极谱法 采用电化学分析法进行痕量元素测定,除用悬汞电极溶出伏安法测定 Cu、Pb、Cd、Zn、S等元素外,近年来发展了玻璃碳电极镀金膜溶出伏安法测定某些重金属元素。另外用金(或金膜)电极测定As、Se、Te、Hg等元素。膜溶出伏安法可进行阳极溶出,也可进行阴极溶出,测定下限可达1~10ng,将溶出伏安法与微分脉冲极谱技术相结合,可大大提高灵敏度和选择性。 参考书目 E. B. Sandell, Hiroshi Onishi, Photometric Determination of Traces of Metals,General Aspects,Wiley-Interscience,New York,1978. J. D. Wineforder, Trace Analysis Spectroscope Methods for Elements,Wiley-Interscience,New York,1976. |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。