词条 | 潮汐静力学理论 |
释义 | chaoxi jinglixue lilun 潮汐静力学理论(卷名:大气科学 海洋科学 水文科学) static theory of tides 自从I.牛顿用引潮力解释潮汐运动之后,潮汐动力的基本问题已经清晰,但用牛顿的理论直接研究海洋中的潮汐问题时,遇到非常复杂的数学困难。为此,必须将海洋所占据的空间区域,理想化为它具有简单的几何形状。1740年,D.伯努利从静力学平衡的角度出发,假设地球表面都被海洋所覆盖,而且海面在任何时刻都能够保持与重力和引潮力的合力处处垂直。这种理想化了的海洋潮汐,称为平衡潮。伯努利的这种学说,称为平衡潮学说。在此学说的基础上建立起来的一种潮汐理论,为潮汐静力学理论。这是继牛顿之后第一个提出的潮汐理论。 由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高 ![]() ![]() 如果在公式中取D =哹,且当θ=0°或180°时, ![]() ![]() 每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。 大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。 为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为 ![]() 平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。