词条 | 电法勘探 |
释义 | dianfa kantan 电法勘探(卷名:固体地球物理学 测绘学 空间科学) electrical prospecting 根据地壳中各种岩石和矿体之间存在的电磁学性质的差异,通过对电磁场观测,以探查地质构造和寻找有用矿产。电法勘探主要利用岩石的导电性、介电性、导磁性和电化学性质(见岩石物理性质)。当地下岩层和矿体的电学性质沿水平方向和垂直方向发生变化时,地面观测到的电磁场空间分布便相应地发生变化。根据电磁场空间分布的异常特征,人们可以推断地质构造或矿体的存在状态,包括大小、形状、位置、埋藏深度和物性参数等,从而达到勘探的目的。电法勘探的方法有许多种,常用的方法有电阻率法、充电法、激发极化法、自然电场法、大地电磁法和电磁感应法等。电法勘探的应用范围很广,主要用于寻找金属和非金属矿床,勘查地下水和能源资源,并解决一些工程地质问题。 发展简史 电法勘探自19世纪初开始实验研究。1835年福克斯(R. W.Fox)用自然电场法找到了第一个硫化矿。19世纪末期提出的利用人工场源的电阻率法,到20世纪初已较成熟。20世纪初确立了电阻率法和温纳尔装置。激发极化效应的电化学过程是1920年发现的,经各国学者的深入研究,形成了激发极化法。电磁感应法于1917年提出,并于1925年首次获得找矿效果。中国的电法勘探工作始于30年代,1949年以后才取得迅速发展。 电阻率法 ![]() ![]() 中间梯度法 供电电极A、B不动,测量电极M、N在A、B中间的1/3~1/2范围内逐点移动,在每个测点上观测△U和I,标出ρs值, 并绘成剖面曲线图。当A、B中间埋藏着高电阻率矿体时, 则ρs增大;如有低电阻率矿体,则情况相反(图2)。此法在寻找陡立高阻矿脉和平缓低阻矿体,以及作地质填图时效果较好。 ![]() 电测剖面法 各电极距离不变,且按特定方向排列,在沿测线的每个测点上测量ρs, 绘成剖面曲线图。根据电极的排列方式,电测剖面法又可分为联合剖面法(图3)、对称四极剖面法和偶极剖面法等。 ![]() 电测深法 测量电极 M、N不动,即ρs的测点不动,供电电极A、B选定多种电极距。工作过程中,由小到大改变电极距,使A、B极逐次向M、N极的外侧移动,依次观测△U和I,算出对应于各种AB值的ρs,绘成ρs随AB/2变化的电测深曲线图。当AB很小时, ρs主要反映地表层的电阻率;当AB逐次增大时, ρs逐渐反映深部地层的电性特征。依此,可探测地下不同深度的地质构造情况。本法也包含几种不同的分支方法。主要用于探查地下的地质构造,借以寻找石油、天然气和煤田,以及解决水文、工程地质问题。勘探深度最大可达几公里。 充电法 当在野外发现良导性矿体的一部分以某种形式出露时,用此法可以确定该矿体的走向、长度和空间产状。 ![]() 激发极化法 ![]() 按供电和测量内容的不同,可分为直流(时间域)激发极化法和交流(频率域)激发极化法。用直流供电时,地下总电流场(供电电流与激发极化电流之和)的强度和分布,一般主要决定于矿体的导电作用,因此观测总电流场的电位差△U可获得视电阻率ρs。激发极化电流场主要决定于矿体表面的电化学作用,同时也与电阻率有关。通常在供电电流断电后观测激发极化场的电位差△U2,并定义视极化率(ηs)为: ![]() 交流激发极化法又分为两种方法:变频法和复电阻率法。变频法通常用超低频段(0.01~10赫)中两种相差较大的固定频率分别供电,观测两种频率供电时电位差的幅值, 获得视电阻率 ρs1(用较低频率观测所得)和ρs2(用较高频率观测所得),并由此算出“视频散率”或(“视频率效应”),数值上等于(ρs1-ρs2)/ρs2,其找矿原理与视极化率相同。复电阻率法利用的频段比变频法宽,用各种频率分别供电,测量M、N极间电场的振幅和相位或虚分量和实分量等多种参量,算出复电阻率,利用各种参量的变化规律来寻找矿体。 激发极化法近年来又有新进展,利用供电电流和激发极化电流产生的磁场来找矿和进行地质填图,称为磁电阻率法和磁激发极化法。 自然电场法 利用自然电场进行找矿和解决其他地质问题的方法。对于自然电场的产生原因,目前尚有不同见解。 ![]() 大地电磁法 利用大地中广泛分布(几百公里或更大范围)的不稳定的天然电磁场(常用频率范围为10-4~104赫)可以进行地质普查。引起大地磁场的原因,一般认为是太阳辐射状态的变化,电离层中电流体系的扰动以及雷电作用等。高频电磁场穿透深度小,低频电磁场穿透深度大。利用这种规律可使探查深度由浅至深,达数十公里甚至百公里以上。因此本法常用于勘查深部地壳构造。 电磁感应法 其原理(图7) ![]() |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。