词条 | 素数分布 |
释义 | sushu fenbu 素数分布(卷名:数学) distribution of prime number 数论中研究素数性质的一类重要问题。素数或称质数,是指一个大于1的整数,除1和它本身外,不能被其他的正整数所整除。例如,2,3,5,7,11,13,17,19都是素数。大约在公元前300年,欧几里得就证明了素数有无穷多个。设2,3,…,p是不大于p的所有素数,q=2·3·…·p+1。容易看出q不是2,3,…,p 的倍数。由于q的最小正除数一定是素数,因此,或者q本身是一个素数,或者q可被p与q之间的某个素数所整除。所以必有一个大于p 的素数存在,由此即知素数有无穷多个。素数在自然数中占有极其重要的地位,但是它的变化非常不规则。人们至今没有找到,大概也不可能找到一个可以表示全体素数的有用公式。研究各种各样的素数分布状况,一直是数论中最重要和最有吸引力的中心问题之一。最初的研究方法,是通过观察素数表来发现素数分布的性质。现有的较完善的素数表是D.B.扎盖尔于1977年编制的,列出了不大于50000000的所有素数。从素数表可以看出:在1到100中间有25个素数,在1到1000中间有168个素数,在1000到2000中间有135个素数, 在2000到3000中间有127个素数,在3000到4000中间有120个素数,在4000到5000中间有119个素数,在5000到10000中间有560个素数。由此可看出,素数的分布越往上越稀少。目前所知道的最大素数是2216091-1(见梅森数),它有65050位,是1985年发现的,在证明它是素数时需用特殊的方法并借助于电子计算机。关于素数分布性质的许多著名猜想,是通过数值观察、计算和初步研究提出的,大多数至今仍未解决。其中最著名的猜想有以下几个: 孪生素数猜想 两个差等于2的一对素数,称为孪生素数。例如,3和5;5和7;11和13;17和19;29和31;41和43;59和61;71和73;101和103;…;10016957和10016959;都是孪生素数。迄今所知的最大孪生素数是1159142985×22304-1和1159142985×22304+1;它们是A.O.L.阿特金和N.W.里克特于1979年得到的。所谓孪生素数猜想,即存在无穷多对孪生素数。这个猜想至今没有解决,但认为它是正确的可能性很大。在这方面的最好结果是陈景润于1966年得到的:存在无穷多个素数p,使得p+2是不超过两个素数之积。 素数定理 关于素数个数的研究是素数分布中最重要的问题之一。以 π(x)表示不大于x的素数个数,例如,π(2)=1,π(3)=2,π(100)=25,π(1000)=168。欧几里得早就证明了素数有无穷多个,即 ![]() ![]() ![]() ![]() ![]() ![]() 有误差项的素数定理是指寻求误差π(x)-lix的最佳估计, ![]() ![]() ![]() ![]() ![]() 算术级数中的素数定理 P.G.L.狄利克雷于1837年首先证明了首项与公差互素的算术级数中有无限多个素数。设整数q≥3.1≤l≤q,(l,q)=1。以π(x,q,l)表首项为l、公差为q的算术级数中不超过x 的素数之个数。类似于素数定理,对于固定的q,容易证明: ![]() ![]() 算术级数中的最小素数 设k≥3,1≤l≤k,(l,k)=1。以p(k,l)表算术级数kn+l(n=0,1,2,…)中的最小素数。S.乔拉猜测p(k,l)=O(k ![]() 相邻素数之差 设pn是第n个素数, ![]() ![]() ![]() ![]() 参考书目 华罗庚著:《指数和的估计及其在数论中的应用》,科学出版社,北京,1963。 K.Prachar,Primzahlverteilung,Springer-Verlag,Berlin,1957. M.N.Huxley,The Distribution of Prime Number,Clarendon, Oxford,1972. |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。