词条 | 可遗坐标 |
释义 | keyi zuobiao 可遗坐标(卷名:力学) ignorable coordinates 又称循环坐标,是在拉格朗日函数L中不出现或在哈密顿函数 H中不出现的广义坐标。例如在有心力作用下的质点运动,用球坐标(r,嗞,θ)表达的拉格朗日函数为: ![]() ![]() ![]() ![]() 对于哈密顿正则系统,如果qi是可遗坐标,根据正则方程,得到与qi对应的广义动量pi为常数。利用正则变换可把哈密顿系统尽可能多的广义坐标变换成可遗坐标。对于这样的坐标,哈密顿-雅可比方程的全积分的形式比较简单,其中包含着可遗坐标的一次式。如果选择正则变换,使变换后的哈密顿函数恒等于零,则变换后的全部广义坐标都是可遗坐标,此时系统极易求解。按这种考虑所得到的方法就是哈密顿-雅可比方法。 参考书目 E. T. Whittaker, A Treatise on the Analytical Dynamicsof Particles and Rigid Bodies, 4th ed., Cambridge Univ.Press,Cambridge,1952. W.M.Smart, Celestial Mechanics, John Wiley & Sons,Glasgow,1953. |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。