请输入您要查询的百科知识:

 

词条 Arrhenius equation
释义
Arrhenius equation
chemistry
mathematical expression that describes the effect of temperature on the velocity of a chemical reaction, the basis of all predictive expressions used for calculating reaction-rate (reaction rate) constants. In the Arrhenius equation, k is the reaction-rate constant, A and E are numerical constants characteristic of the reacting substances, R is the thermodynamic gas constant, and T is the absolute temperature. The equation is commonly given in the form of an exponential function,
k = Aexp(−E/RT),
and it predicts that a small increase in reaction temperature will produce a marked increase in the magnitude of the reaction-rate constant.
The Arrhenius equation was originally formulated by J.J. Hood on the basis of studies of the variation of rate constants of some reactions with temperature. The Swedish chemist Svante Arrhenius (Arrhenius, Svante August), for whom the equation is named, showed that the relationship is applicable to almost all kinds of reactions. He also provided a theoretical basis for the equation by an analogy with the expression for the thermodynamic equilibrium constant. Later, the numerical constants A and E were shown by the collision and transition-state theories of chemical reactions to represent quantities indicative of the fundamental process of chemical reactions; i.e., E represents the energy of activation, and A represents the frequency at which atoms and molecules collide in a way that leads to reaction.
随便看

 

百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Newdu.com All Rights Reserved
更新时间:2025/2/19 16:21:06