词条 | semiconductor device |
释义 | semiconductor device electronics Introduction electronic circuit component made from a material that is neither a good conductor nor a good insulator (hence semiconductor). Such devices have found wide applications because of their compactness, reliability, and low cost. As discrete components, they have found use in power devices, optical sensors, and light emitters, including solid-state lasers. They have a wide range of current- and voltage-handling capabilities, with current ratings from a few nanoamperes (10−9 ampere) to more than 5,000 amperes and voltage ratings extending above 100,000 volts. More importantly, semiconductor devices lend themselves to integration into complex but readily manufacturable microelectronic circuits. They are, and will be in the foreseeable future, the key elements for the majority of electronic systems, including communications, consumer, data-processing, and industrial-control equipment. Semiconductor and junction principles Semiconductor materials ![]() ![]() ![]() ![]() Portion of the periodic table of elements related to semiconductorsThe study of semiconductor materials began in the early 19th century. Over the years, many semiconductors have been investigated. The table (Portion of the periodic table of elements related to semiconductors) shows a portion of the periodic table related to semiconductors. The elemental (chemical element) semiconductors are those composed of single species of atoms, such as silicon (Si), germanium (Ge), and gray tin (Sn) in column IV and selenium (Se) and tellurium (Te) in column VI. There are, however, numerous compound semiconductors that are composed of two or more elements. Gallium arsenide (GaAs), for example, is a binary III-V compound, which is a combination of gallium (Ga) from column III and arsenic (As) from column V. Ternary compounds can be formed by elements from three different columns, as, for instance, mercury indium telluride (HgIn2Te4), a II-III-VI compound. They also can be formed by elements from two columns, such as aluminum gallium arsenide (AlxGa1 − xAs), which is a ternary III-V compound, where both Al and Ga are from column III and the subscript x is related to the composition of the two elements from 100 percent Al (x = 1) to 100 percent Ga (x = 0). Pure silicon is the most important material for integrated circuit application, and III-V binary and ternary compounds are most significant for light emission. Prior to the invention of the bipolar transistor in 1947, semiconductors were used only as two-terminal devices, such as rectifiers and photodiodes. During the early 1950s, germanium was the major semiconductor material. However, it proved unsuitable for many applications, because devices made of the material exhibited high leakage currents at only moderately elevated temperatures. Since the early 1960s, silicon has become a practical substitute, virtually supplanting germanium as a material for semiconductor fabrication. The main reasons for this are twofold: (1) silicon devices exhibit much lower leakage currents, and (2) high-quality silicon dioxide (silica) (SiO2), which is an insulator, is easy to produce. Silicon technology is now by far the most advanced among all semiconductor technologies, and silicon-based devices constitute more than 95 percent of all semiconductor hardware sold worldwide. Many of the compound semiconductors have electrical and optical properties that are absent in silicon. These semiconductors, especially gallium arsenide, are used mainly for high-speed and optoelectronic applications. Electronic properties ![]() ![]() At low temperatures the electrons are bound in their respective positions in the crystal; consequently, they are not available for electrical conduction. At higher temperatures thermal vibration may break some of the covalent bonds. The breaking of a bond yields a free electron that can participate in current conduction. Once an electron moves away from a covalent bond, there is an electron deficiency in that bond. This deficiency may be filled by one of the neighbouring electrons, which results in a shift of the deficiency location from one site to another. This deficiency may thus be regarded as a particle similar to an electron. This fictitious particle, dubbed a hole, carries a positive charge and moves, under the influence of an applied electric field, in a direction opposite to that of an electron. For an isolated atom, the electrons of the atom can have only discrete energy levels (energy state). When a large number of atoms are brought together to form a crystal, the interaction between the atoms causes the discrete energy levels to spread out into energy bands (band theory). When there is no thermal vibration (i.e., at low temperature), the electrons in a semiconductor will completely fill a number of energy bands, leaving the rest of the energy bands empty. The highest filled band is called the valence band. The next higher band is the conduction band, which is separated from the valence band by an energy gap. This energy gap, also called a bandgap, is a region that designates energies that the electrons in the semiconductor cannot possess. Most of the important semiconductors have bandgaps in the range 0.25 to 2.5 eV. The bandgap of silicon, for example, is 1.12 eV and that of gallium arsenide is 1.42 eV. As discussed above, at finite temperatures thermal vibrations will break some bonds. When a bond is broken, a free electron, along with a free hole, results, i.e., the electron possesses enough thermal energy to cross the bandgap to the conduction band, leaving behind a hole in the valence band. When an electric field is applied to the semiconductor, both the electrons in the conduction band and the holes in the valence band gain kinetic energy and conduct electricity. The electrical conductivity of a material depends on the number of charge carriers (i.e., free electrons and free holes) per unit volume and on the rate at which these carriers move under the influence of an electric field. In an intrinsic semiconductor there exists an equal number of free electrons and free holes. The electrons and holes, however, have different mobilities—that is to say, they move with different velocities in an electric field. For example, for intrinsic silicon at room temperature, the electron mobility is 1,500 square centimetres per volt second (cm2/V·s)—i.e., an electron will move at a velocity of 1,500 centimetres per second under an electric field of one volt per centimetre—while the hole mobility is 500 cm2/V·s. The mobilities of a given semiconductor generally decrease with increasing temperature or with increased impurity concentration. ![]() ![]() ![]() ![]() The p-n (p-n junction) junction ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Two-terminal junction devices A p-n junction diode is a solid-state device that has two terminals. Depending on impurity distribution, device geometry, and biasing condition, a junction diode can perform various functions. There are more than 50,000 types of diodes with voltage ratings from less than 1 volt to more than 2,000 volts and current ratings from less than 1 milliampere to more than 5,000 amperes. A p-n junction also can generate and detect light and convert optical radiation into electrical energy. rectifier This type of p-n junction diode is specifically designed to rectify an alternating current—i.e., to give a low resistance to current flow in one direction and a very high resistance in the other direction. Such diodes are generally designed for use as power-rectifying devices that operate at frequencies from 50 hertz to 50 kilohertz. The majority of rectifiers have power-dissipation capabilities from 0.1 to 10 watts and a reverse breakdown voltage from 50 to more than 5,000 volts. (A high-voltage rectifier is made from two or more p-n junctions connected in series.) Zener diode This voltage regulator is a p-n junction diode that has a precisely tailored impurity distribution to provide a well-defined breakdown voltage. It can be designed to have a breakdown voltage over a wide range from 0.1 volt to thousands of volts. The Zener diode is operated in the reverse direction to serve as a constant voltage source, as a reference voltage for a regulated power supply, and as a protective device against voltage and current transients. Varactor diode The varactor (variable reactor) is a device whose reactance can be varied in a controlled manner with a bias voltage. It is a p-n junction with a special impurity profile, and its capacitance variation is very sensitive to reverse-biased voltage. Varactors are widely used in parametric amplification, harmonic generation, mixing, detection, and voltage-variable tuning applications. Tunnel diode A tunnel diode consists of a single p-n junction in which both the p and n sides are heavily doped with impurities. The depletion layer is very narrow (about 100 angstroms). Under forward biases, the electrons can tunnel or pass directly through the junction, producing a negative resistance effect (i.e., the current decreases with increasing voltage). Because of its short tunneling time across the junction and its inherent low noise (random fluctuations either of current passing through a device or of voltage developed across it), the tunnel diode is used in special low-power microwave applications, such as a local oscillator and a frequency-locking circuit. Schottky diode Such a diode is one that has a metal-semiconductor contact (e.g., an aluminum layer in intimate contact with an n-type silicon substrate). It is named for the German physicist Walter H. Schottky, who in 1938 explained the rectifying behaviour of this kind of contact. The Schottky diode is electrically similar to a p-n junction, though the current flow in the diode is due primarily to majority carriers having an inherently fast response. It is used extensively for high-frequency, low-noise mixer and switching circuits. Metal-semiconductor contacts can also be nonrectifying; i.e., the contact has a negligible resistance regardless of the polarity of the applied voltage. Such a contact is called an ohmic contact. All semiconductor devices as well as integrated circuits need ohmic contacts to make connections to other devices in an electronic system. The p-i-n diode A p-i-n diode is a p-n junction with an impurity profile tailored so that an intrinsic layer, the “i region,” is sandwiched between a p layer and an n layer. The p-i-n diode has found wide application in microwave circuits. It can be used as a microwave switch with essentially constant depletion-layer capacitance (equal to that of a parallel-plate capacitor having a distance between the plates equal to the i-region thickness) and high power-handling capability. Bipolar transistors This type of transistor is one of the most important of the semiconductor devices. It is a bipolar device in that both electrons and holes are involved in the conduction process. The bipolar transistor delivers a change in output current in response to a change in input voltage at the base. The ratio of these two changes has resistance dimensions and is a “transfer” property (input-to-output), hence the name transistor. ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() The bipolar transistor is composed of two closely coupled p-n junctions. The emitter-base p+-n junction is forward-biased and has low resistance. The majority carriers (holes) in the p+-emitter are injected (or emitted) into the base region. The base-collector n-p junction is reverse-biased. It has high resistance, and only a small leakage current will flow across the junction. If the base width is sufficiently narrow, however, most of the holes injected from the emitter can flow through the base and reach the collector. This transport mechanism gives rise to the prevailing nomenclature: emitter, which emits or injects carriers, and collector, which collects these carriers injected from a nearby junction. ![]() ![]() ![]() ![]() ![]() ![]() Thyristors (thyristor) The thyristors constitute a family of semiconductor devices that exhibit bistable characteristics and can be switched between a high-resistance, low-current “off” state and a low-resistance, high-current “on” state. The operation of thyristors is intimately related to the bipolar transistor, in which both electrons and holes are involved in the conduction processes. The name thyristor is derived from the electron tube called the gas thyratron, since the electrical characteristics of both devices are similar in many respects. Because of their two stable states (on and off) and low power dissipations in these states, thyristors are used in applications ranging from speed control in home appliances to switching and power conversion in high-voltage transmission lines. More than 40,000 types of thyristors are available, with current ratings from a few milliamperes to more than 5,000 amperes and voltage ratings extending to 900,000 volts. ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() A bidirectional, three-terminal thyristor is called a triac. This device can switch the current in either direction by applying a small current of either polarity between the gate and one of the two main terminals. The triac is fabricated by integrating two thyristors in an inverse parallel connection. It is used in AC applications such as light dimming, motor-speed control, and temperature control. There also are many light-activated thyristors that use an optical signal to control the switching behaviour of devices. Metal-semiconductor field-effect transistors The metal-semiconductor field-effect transistor (MESFET) is a unipolar device, because its conduction process involves predominantly only one kind of carrier. The MESFET offers many attractive features for applications in both analog and digital circuits. It is particularly useful for microwave amplifications and high-speed integrated circuits, since it can be made from semiconductors with high electron mobilities (e.g., gallium arsenide, whose mobility is five times that of silicon). Because the MESFET is a unipolar device, it does not suffer from minority-carrier effects and so has higher switching speeds and higher operating frequencies than do bipolar transistors. ![]() ![]() ![]() ![]() ![]() ![]() A device related to the MESFET is the junction field-effect transistor (JFET). The JFET, however, has a p-n junction instead of a metal-semiconductor contact for the gate electrode. The operation of a JFET is identical to that of a MESFET. ![]() ![]() To improve the performance of the MESFET, various heterojunction field-effect transistors (FETs) have been developed. A heterojunction is a junction formed between two dissimilar semiconductors, such as the binary compound GaAs and the ternary compound AlxGa1 − xAs. Such junctions have many unique features that are not readily available in the conventional p-n junctions discussed previously. ![]() ![]() ![]() ![]() Metal-oxide-semiconductor field-effect transistors The most important device for very-large-scale integrated circuits (those that contain more than 100,000 semiconductor devices such as diodes and transistors) is the metal-oxide-semiconductor field-effect transistor (MOSFET). The MOSFET is a member of the family of field-effect transistors, which includes the MESFET and JFET. ![]() ![]() ![]() ![]() The source is generally used as the voltage reference and is grounded. When no voltage is applied to the gate, the source-to-drain electrodes correspond to two p-n junctions connected back to back. The only current that can flow from source to drain is a small leakage current. When a high positive bias is applied to the gate, a large number of electrons will be attracted to the semiconductor surface and form a conductive layer just underneath the oxide. The n+ source and n+ drain are now connected by a conducting surface n layer (or channel) through which a large current can flow. The conductance of this channel can be modulated by varying the gate voltages; the conductance also can be changed by the substrate bias. ![]() ![]() The main reasons why the MOSFET has surpassed the bipolar transistor and become the dominant device for very-large-scale integrated circuits are: (1) the MOSFET can be easily scaled down to smaller dimensions, (2) it consumes much less power, and (3) it has relatively simple processing steps, and this results in a high manufacturing yield (i.e., the ratio of good devices to the total). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。