词条 | differential geometry |
释义 | differential geometry Introduction branch of mathematics that studies the geometry of curves, surfaces, and manifolds (manifold) (the higher-dimensional analogs of surfaces). The discipline owes its name to its use of ideas and techniques from differential calculus, though the modern subject often uses algebraic and purely geometric techniques instead. Although basic definitions, notations, and analytic descriptions vary widely, the following geometric questions prevail: How does one measure the curvature of a curve within a surface (intrinsic) versus within the encompassing space (extrinsic)? How can the curvature of a surface be measured? What is the shortest path within a surface between two points on the surface? How is the shortest path on a surface related to the concept of a straight line? While curves had been studied since antiquity, the discovery of calculus in the 17th century opened up the study of more complicated plane curves—such as those produced by the French mathematician René Descartes (Descartes, René) (1596–1650) with his “compass” (see History of geometry: Cartesian geometry (geometry)). In particular, integral calculus led to general solutions of the ancient problems of finding the arc length of plane curves and the area of plane figures. This in turn opened the stage to the investigation of curves and surfaces in space—an investigation that was the start of differential geometry. ![]() ![]() An important question remains: Can the annular strip be bent, without stretching, so that it forms a strake around the cylinder? In particular, this means that distances measured along the surface (intrinsic) are unchanged. Two surfaces are said to be isometric if one can be bent (or transformed) into the other without changing intrinsic distances. (For example, because a sheet of paper can be rolled into a tube without stretching, the sheet and tube are “locally” isometric—only locally because new, and possibly shorter, routes are created by connecting the two edges of the paper.) Thus, the second question becomes: Are the annular strip and the strake isometric? To answer this and similar questions, differential geometry developed the notion of the curvature of a surface. Curvature of curves ![]() ![]() ![]() ![]() Curvature of surfaces ![]() ![]() The theory of surfaces and principal normal curvatures was extensively developed by French geometers led by Gaspard Monge (Monge, Gaspard, comte de Péluse) (1746–1818). It was in an 1827 paper, however, that the German mathematician Carl Friedrich Gauss (Gauss, Carl Friedrich) made the big breakthrough that allowed differential geometry to answer the question raised above of whether the annular strip is isometric to the strake. The Gaussian curvature of a surface at a point is defined as the product of the two principal normal curvatures; it is said to be positive if the principal normal curvatures curve in the same direction and negative if they curve in opposite directions. Normal curvatures for a plane surface are all zero, and thus the Gaussian curvature of a plane is zero. For a cylinder of radius r, the minimum normal curvature is zero (along the vertical straight lines), and the maximum is 1/r (along the horizontal circles). Thus, the Gaussian curvature of a cylinder is also zero. If the cylinder is cut along one of the vertical straight lines, the resulting surface can be flattened (without stretching) onto a rectangle. In differential geometry, it is said that the plane and cylinder are locally isometric. These are special cases of two important theorems: ● Gauss's “Remarkable Theorem” (1827). If two smooth surfaces are isometric, then the two surfaces have the same Gaussian curvature at corresponding points. (Athough defined extrinsically, Gaussian curvature is an intrinsic notion.) ● Minding's theorem (1839). Two smooth (“cornerless”) surfaces with the same constant Gaussian curvature are locally isometric. As corollaries to these theorems: ● A surface with constant positive Gaussian curvature c has locally the same intrinsic geometry as a sphere of radius √1/c. (This is because a sphere of radius r has Gaussian curvature 1/r2). ● A surface with constant zero Gaussian curvature has locally the same intrinsic geometry as a plane. (Such surfaces are called developable). ● A surface with constant negative Gaussian curvature c has locally the same intrinsic geometry as a hyperbolic plane. (See non-Euclidean geometry.) The Gaussian curvature of an annular strip (being in the plane) is constantly zero. So to answer whether or not the annular strip is isometric to the strake, one needs only to check whether a strake has constant zero Gaussian curvature. The Gaussian curvature of a strake is actually negative, hence the annular strip must be stretched—although this can be minimized by narrowing the shapes. Shortest paths on a surface From an outside, or extrinsic, perspective, no curve on a sphere is straight. Nevertheless, the great circles are intrinsically straight—an ant crawling along a great circle does not turn or curve with respect to the surface. About 1830 the Estonian mathematician Ferdinand Minding defined a curve on a surface to be a geodesic if it is intrinsically straight—that is, if there is no identifiable curvature from within the surface. A major task of differential geometry is to determine the geodesics on a surface. The great circles are the geodesics on a sphere. ![]() ![]() On a surface which is complete (every geodesic can be extended indefinitely) and smooth, every shortest curve is intrinsically straight and every intrinsically straight curve is the shortest curve between nearby points. Additional Reading Visualizing curves and surfaces James Casey, Exploring Curvature (1996), is a truly delightful book full of “experiments” to explore the curvature of curves and surfaces. Jeffrey R. Weeks, The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds (1985), contains an elementary but deep discussion of different two- and three-dimensional spaces that may be models for the shape of our physical universe. Alfred Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. (1998), allows exploration of the subject through computer-generated figures. Vladimir Rovenski, Geometry of Curves and Surfaces with MAPLE (2000), is another textbook-software package for exploring differential geometry. Introductory textbooks David W. Henderson, Differential Geometry: A Geometric Introduction (1998), emphasizes the underlying geometric intuitions, rather than analytic formalisms. John McCleary, Geometry from a Differentiable Viewpoint (1994), emphasizes the history of the subject from Euclid's fifth (“parallel”) postulate and the development of the hyperbolic plane through the genesis of differential geometry. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), uses linear algebra extensively to treat the formalisms of extrinsic differential geometry. Saul Stahl, The Poincaré Half-Plane: A Gateway to Modern Geometry (1993), is an analytic introduction to some of the ideas of intrinsic differential geometry starting from calculus. Ethan D. Bloch, A First Course in Geometric Topology and Differential Geometry (1997), explores the notion of curvature on polyhedra and contains the topological classification and differential geometry of surfaces. |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。