词条 | fundamental theorem of calculus |
释义 | fundamental theorem of calculus Basic principle of calculus. It relates the derivative to the integral and provides the principal method for evaluating definite integrals (see differential calculus; integral calculus). In brief, it states that any function that is continuous (see continuity) over an interval has an antiderivative (a function whose rate of change, or derivative, equals the function) on that interval. Further, the definite integral of such a function over an interval a \\< x \\< b is the difference F(b) − F(a), where F is an antiderivative of the function. This particularly elegant theorem shows the inverse function relationship of the derivative and the integral and serves as the backbone of the physical sciences. It was articulated independently by Isaac Newton (Newton, Sir Isaac) and Gottfried Wilhelm Leibniz (Leibniz, Gottfried Wilhelm). |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。