词条 | non-Euclidean geometry |
释义 | non-Euclidean geometry Introduction Comparison of Euclidean, spherical, and hyperbolic geometriesliterally any geometry that is not the same as Euclidean geometry. Although the term is frequently used to refer only to hyperbolic geometry (non-Euclidean geometry), common usage includes those few geometries (hyperbolic and spherical (non-Euclidean geometry)) that differ from but are very close to Euclidean geometry (see table (Comparison of Euclidean, spherical, and hyperbolic geometries)). The non-Euclidean geometries developed along two different historical threads. The first thread started with the search to understand the movement of stars and planets in the apparently hemispherical sky. For example, Euclid (flourished c. 300 BC) wrote about spherical geometry in his astronomical work Phaenomena. (See cosmos: Astronomical theories of the ancient Greeks (Cosmos).) In addition to looking to the heavens, the ancients attempted to understand the shape of the Earth and to use this understanding to solve problems in navigation over long distances (and later for large-scale surveying). These activities are aspects of spherical geometry. The second thread started with the fifth (“parallel”) postulate in Euclid's Elements: If a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, will meet on that side on which the angles are less than the two right angles. For 2,000 years following Euclid, mathematicians attempted either to prove the postulate as a theorem (based on the other postulates) or to modify it in various ways. (See geometry: Non-Euclidean geometries (geometry).) These attempts culminated when the Russian Nikolay Lobachevsky (Lobachevsky, Nikolay Ivanovich) (1829) and the Hungarian János Bolyai (Bolyai, János) (1831) independently published a description of a geometry that, except for the parallel postulate, satisfied all of Euclid's postulates and common notions. It is this geometry that is called hyperbolic geometry. Spherical geometry From early times, people noticed that the shortest distance between two points on Earth were great circle routes (great circle route). For example, the Greek astronomer Ptolemy wrote in Geography (c. AD 150): It has been demonstrated by mathematics that the surface of the land and water is in its entirety a sphere…and that any plane which passes through the centre makes at its surface, that is, at the surface of the Earth and of the sky, great circles. ![]() ![]() There are many ways of projecting a portion of a sphere, such as the surface of the Earth, onto a plane. These are known as maps or charts and they must necessarily distort distances and either area or angles. Cartographers (cartography)' need for various qualities in map projections (map) gave an early impetus to the study of spherical geometry. ![]() ![]() hyperbolic geometry The first description of hyperbolic geometry was given in the context of Euclid's postulates, and it was soon proved that all hyperbolic geometries differ only in scale (in the same sense that spheres only differ in size). In the mid-19th century it was shown that hyperbolic surfaces must have constant negative curvature. However, this still left open the question of whether any surface with hyperbolic geometry actually exists. ![]() ![]() ![]() ![]() Additional Reading David W. Henderson and Daina Taimina, Experiencing Geometry: Euclidean and Non-Euclidean with History, 3rd ed. (2005), compares non-Euclidean geometries and includes directions for constructing hyperbolic surfaces. John McCleary, Geometry from a Differentiable Viewpoint (1994), emphasizes the history of the subject from Euclid's fifth (parallel) postulate and the development of the hyperbolic plane through the genesis of differential geometry. University of Minnesota, Geometry Center, Not Knot (1991), is a videotaped documentary that combines computer animations of hyperbolic spaces with a discussion that is accessible to a general audience. |
随便看 |
|
百科全书收录100133条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。