词条 | 雅可比行列式 |
释义 | Yɑkebi hanglieshi 雅可比行列式(卷名:数学) Jacobian determinant 通常称为雅可比式(Jacobian)。它是以n个n元函数 ![]() ![]() ![]() ![]() ![]() 若因变量u1,u2,…,un对自变量x1,x2,…,xn连续可微,而自变量x1,x2,…,xn对新变量r1,r2,…,rn连续可微,则因变量(u1,u2,…,un)也对新变量(r1,r2,…,rn)连续可微,并且 ![]() ![]() 如果(3)中的r能回到u, ![]() ![]() ![]() 在n=2的情形,以Δx1,Δx2为邻边的矩形(ΔR)对应到(u1,u2)平面上的一个曲边四边形(ΔS),其面积ΔS关于Δx1,Δx2的线性主要部分,即面积微分是 ![]() 如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负(其正负号标志着u-坐标系的旋转定向是否与x-坐标系的一致)。如果雅可比行列式恒等于零,则函数组(u1,u2,…,un)是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。