词条 | 岩石破坏实验 |
释义 | yanshi pohuai shiyan 岩石破坏实验(卷名:固体地球物理学 测绘学 空间科学) experimental study of rock failure 观测岩石破坏条件、破坏过程和该过程中岩石物理性质变化的实验研究。岩石破坏实验的目的在于增进对地震成因的理解,加强对地震前兆的认识。对实际的地震预测来说,通常有两种方法:①总结地震之前观测到的可能与地震发生有关的现象,把它作为地震前兆,进行另一次地震预测尝试。②开展震源物理的研究。即从一定的理论前题出发,提出假说─地震发生的模式;再从这个模式着手,推导可能的前兆和不同前兆之间的关系;然后通过实践检验模式。岩石破坏实验为建立假说提供基本的观测事实,是震源物理研究工作的一部分(图1)。 早在 20世纪 30年代,美国科学家布里奇曼(P.W.Bridgman) 等就开展了在高温高压条件下测量岩石物理性质的研究。但真正将岩石实验结果同地震问题结合起来,则开始于日本茂木清夫1962年的工作。茂木清夫测量了各种岩石受压缩后产生的声发射信号,并用实验结果解释了天然地震的各种类型,他的工作引起了地震学家的浓厚兴趣。1969年以后,发现在许多地震之前波速比vP/vS有异常变化。不久,美国科学家对波速比在地震之前变化的原因提出了理论解释,从而提出了地震的膨胀-扩散模式。70年代以后,岩石破坏实验受到各国从事地震预测研究的科学家的普遍重视。 岩石破坏的机理 目前认为产生地震的两种机理是:岩石的破裂和岩石沿已有断层面的摩擦滑动。对完整的岩石进行压缩时,岩石会产生破裂,出现断裂面。岩石在破裂前,体积会有明显的增加,这叫做岩石的膨胀。膨胀是由于岩石中的裂纹形成及其扩展,而且在应力约等于岩石破裂强度的一半时开始。膨胀会引起岩石物理性质的明显变化(图2)。基于岩石破裂之前的膨胀现象,美国科学家提出了地震发生的膨胀-扩散模式(见震源物理)。 对含有断层或其他间断面的岩石进行压缩时,沿断层面发生摩擦滑动的条件为: 其中σ、τ分别为断层面上的正应力和剪应力。以上定律与经典物理学中的摩擦定律τ=μσ 是很不相同的。经典物理学中的摩擦系数μ与材料种类、界面性质等许多因素有关,而在高压下岩石的摩擦却与岩石种类、界面性质无关。这个定律的物理解释目前尚不完全清楚。一旦达到滑动条件后,摩擦滑动有两种方式(图3):一种是稳定的滑动;另一种是不稳定的滑动,叫做粘滑。多数浅源地震的成因可能与现存断层的粘滑有关。 破坏过程中岩石物理性质的测量 破坏过程中岩石物理性质,例如弹性波速度、电阻率、磁化率、声发射、一些断裂力学参数等将要发生变化。通常将实验室中观测到的这些物理性质的变化,同地震前各种地球物理场的观测资料进行比较,以便了解地震的过程。由于地球上99%以上的岩石都处于1千兆帕(~1万大气压)和500℃以上的高压高温环境之中,因而实验测量工作必须在模拟地球内部的高压高温条件下进行;还由于实验室内岩石样品尺寸不大,故测量精度必须相当高。所以,岩石物理性质的测量,应用和吸收了高温高压技术、激光全息测量技术、电子计算机等许多方面先进的技术和成就。 实验结果的外推 实验室结果是在短时间内对小尺度的岩石样品进行实验得到的。尽管岩石实验的结果可以定性描述巨大岩体的现象,而且也观测到了岩样破坏前性质的变化与地震前兆之间的相似性,但当把这样的实验结果外推于地球各种过程的定量研究时,必须要研究岩石变形的微观机理。只有在知道岩石在实验室和自然界两种条件下的变形机理后,才有可能作出合理的外推。(见彩图) |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。