词条 | 德拜模型 |
释义 | Debai moxing 德拜模型(卷名:物理学) Debye model P.J.W.德拜提出的计算固体热容的原子振动模型。1912年,德拜改进了爱因斯坦模型,考虑热容应是原子的各种频率振动贡献的总和,得到了同实验结果符合得很好的固体热容公式。 德拜模型把原子排列成晶体点阵的固体看作是一个连续弹性媒质,原子间的作用力遵从胡克定律,组成固体的 N个原子在三维空间中集体振动的效果相当于3N个不同频率的独立线性振子的集合。每一个独立谐振子的振动是一种简正振动模式,弹性媒质的一种简正振动模式是具有一定频率、波长和传播方向的弹性波。弹性固体能够以不同的速度传播纵、横两种波。对于每一个振动频率,纵波只有在传播方向的一种振动,横波有两种垂直于传播方向的振动(两个偏振),共三个振动模式。为把固体看作是连续的弹性媒质,德拜模型只考虑那些频率非常低(近似取为零)直到极限频率vm范围内的振动模式。由于N的数目很大,3N种振动频率可看作是连续分布在零到vm区间内,则3N个不同频率的独立谐振子的总能量就由分立的求和变为积分 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 上式在T ![]() ![]() ![]() ![]() ![]() ![]() 根据量子论,德拜所考虑的弹性波的简正振动能量也是量子化的,是最小能量hv的倍数。弹性波的这一最小能量称为声子,它是固体原子系统的集体激发模式,可看作是在点阵中传播的具有一定能量和运动方向的准粒子。把弹性声波场当作声子系统处理后,再把普朗克公式运用到固体点阵振动上,频率为v的振子振动的平均能量就是 ![]() 德拜模型不能用于以下几种情况:①较复杂的分子,特别是高度各向导性晶体,前述的频率分布函数不适用时;②波长同点阵间距离可比拟,破坏了连续媒质的设想时;③极低温度下,电子参与对热容贡献并起主要作用时(见电子比热容)。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。