词条 | 超导电子学 |
释义 | chaodao dianzixue 超导电子学(卷名:电子学与计算机) superconductive electronics 超导体物理与电子技术相结合的一门科学,以超导体的约瑟夫逊效应等为基础,主要研究物体处于超导状态下超导电子所具有一系列效应的理论、技术和应用。 简史 1908年,荷兰H.K.翁纳斯首次使氦气液化,成功地获得4.2K低温。1911年,他在研究各种金属在低温下的电阻性质时发现了汞的超导电性。1933年,W.迈斯纳和R.奥森菲尔德发现磁场不能进入超导体内部的新现象,即迈斯纳效应。这表明超导体具有完全抗磁性。为了解释超导体的理想导电性(零电阻现象)和完全抗磁性这两个基本特性,1935年德国物理学家F.W.伦敦指出,超导性是一种宏观体系的量子效应,并基于超导性与液氦4He的超流动性的相似性而将其统称为超流体,建立了超导唯象方程即伦敦方程。它指出磁场被排斥到厚度为λ 的伦敦穿透深度的表面薄层中,从而解释了迈斯纳效应。1950年,В.Л.金兹堡和Л.Д.朗道根据相变理论的研究,指出超导态中的超流电子存在某种有序化,且临界温度Tc以下有序度较高,状态用一个序参数 ψ( ![]() 学科内容 超导电子学的理论是以超导体的两个基本特性即零电阻的理想导电性和迈斯纳效应的完全抗磁性为基础,以超导微观理论和超导约瑟夫逊效应为核心。理想导电性是指导体电阻突然消失的零电阻特性,又称超导电性。具有超导电性的物质称为超导体,迄今已发现28种金属、上千种化合物和合金是超导体。材料处于超导状态简称超导态。完全抗磁性是指超导体在超导态时将其内部磁场完全排出体外的现象,又称迈斯纳效应。在超导基本理论的研究中,还发现有同位素效应和库柏对的重要规律和概念。同位素效应是指由不同的同位素做成的超导元素材料,其临界温度Tc和同位素质量M服从Tc·Mα=常数的实验和理论规律。库柏对是指两个电子动量相反,自旋相反,其间的吸引作用最强。如果这个吸引的声子作用胜过排斥的库仑作用,则两电子之间的净作用力是吸引力。只要存在净的吸引作用,不管如何弱,两电子也会互相围绕着运动而束缚在一起。这样一对电子称为库柏对。 超导微观理论 这个理论认为,超导电子就是组成库柏对的那些电子,它们处于凝聚状态。T=0时,所有电子都组成库柏对,它们都是超导电子。在T厵0时,晶格的热振动可能把一些库柏对拆散,使其成为正常电子,温度越高,库柏对越少,正常电子越多。临界温度为Tc时,所有库柏对全部拆散,所有电子都是正常电子,即非配对电子,材料完全处于正常态。这一理论从量子学说出发,揭示了超导电性的主要因素,解释了超导态的基本特性。 高频电磁特性 超导体在微波频率下所具有的超导电性。在高频下,当光量子的能量大于超导体的能隙2Δ时,由于超导体吸收电磁波能量,库柏对被拆散成单个电子,超导态转变成正常态,这时的高频频率称为转变频率。不同超导体的转变频率各不相同,一般在1012赫左右。在理论上,造成这时高频电磁损耗的剩余表面电阻Rs,取决于温度、频率、穿透深度、电子费米速度、相干长度、电子平均自由程和超导能隙,其近似表达式为 ![]() 约瑟夫逊效应 两块或两片超导体之间存在的势垒层(10~20埃)或弱连接形成超导结时,超导电子对通过这些结而呈现的一系列电学、磁学和辐射方面的特性、统称为约瑟夫逊效应或超导电子隧道效应。 超导体有两类:①超导体界面能为正,金兹堡-朗道参量k小于 ![]() ![]() ![]() 直流约瑟夫逊效应 当外加电压等于零时(υ=0),超导电子对能穿过绝缘层形成超导隧道电流而没有电位差的现象。 超导量子干涉效应 鉴于约瑟夫逊结的临界电流Ic对磁场的变化特别敏感,J.E.默塞里奥用两个性能理想一致的约瑟夫逊结构成环路,磁场作用于结A和结B,产生量子相位差,改变了超导电子流体的相位特性现象。它正如一束单色光通过狭缝A、B形成光程差产生干涉一样,所以称为超导量子干涉效应,或称默塞里奥效应。 交流约瑟夫逊效应 超导结在直流电压作用下产生交变电流,从而辐射电磁波的特性,称为交流约瑟夫逊效应。 应用 利用超导体的某些特性和约瑟夫逊效应制成了一系列高灵敏电子仪表和精密测量设备。这些设备已广泛应用于空间电子技术、射电天文、雷达、通信、无线电导航、电子对抗、电子计算机、微波和毫米波技术、激光与红外、基础理论与理化实验以及微电子学、生命科学等各个方面,有的已取得重大进展。 ![]() 微波技术 超导体在微波技术方面获得较多的应用。①超导检测器:利用约瑟夫逊结的零电压电流阶梯随微波辐照功率而变化的原理制成(图2)。约瑟夫逊结检测器几乎能工作到10微米的波长,可用于毫米波、亚毫米波波段,而且检测灵敏度很高。用铌的点接触约瑟夫逊结作检波器,在90吉赫频率上检测灵敏度为5×10-15瓦/赫1/2②超导混频器:约瑟夫逊结是一种高度非线性器件,能很好地实现信号和本振两频率的微波混频。当本振频率 ![]() ![]() ![]() ![]() ![]() ![]() 超导量子干涉器件 利用超导量子干涉效应制成的器件有直流超导量子干涉器件和射频超导量子干涉器件两类(图3)。超导量子干涉器件用作磁强计,可供研究超导体的磁学性质(如磁通蠕动现象等)、地球磁性历史、探测沉积岩和火成岩的微弱磁性之用。它在医学上可用以测量人的肺、心和脑,其磁场搏动分别为10-9、10-10和10-14特(T)数量极,能为临床诊断和医学研究开辟新的途径。这种器件还可用于水下或地下深处甚低频(10~105赫)电磁场高灵敏接收机,也可改装为磁场梯度计(灵敏度可达2.3×10-15特/厘米2)和伏特计(灵敏度一般可到10-9伏,有的已达10-19伏)。射频超导量子干涉器件的频率已扩展0~1吉赫,可用作射频衰减绝对测量,其精度达±0.002分贝。用超导量子干涉器件制成的超导天线,其磁场灵敏度可达到10_13~10-16特。超导量子干涉器件还可用作数字逻辑电路元件和用于超导重力仪,以及用于预报地震等。 电压基准 利用约瑟夫逊交流效应中电压与频率的关系,在超导结以直流电压V0偏置时能产生频率为f0= ![]() ![]() ![]() 超导计算机 1956年,人们利用超导态与正常态转换速度很快的原理制成冷子管。在两种超导体交叉薄膜间用一绝缘体隔开,其中一个超导体起开关作用,另一个超导体起控制作用。但冷子管不能达到很高的开关速度。因此,1967年又利用超导结制作了超导隧道冷子管。稍低于超导结临界电流的门电流通过超导结,当结处于超导态时,结区间为零电压。结区上方用一超导带作控制线,当通电流时,电流产生的磁场使临界电流Ic减小,从而使零电压变为非零电压状态;去掉控制电流,结区又回到零电压状态。这就是超导计算机中的开关原理。 约瑟夫逊结用作计算机的逻辑和存储元件具有输出电压高、开关时间短、功耗低等优点。其运算速度比现有高性能半导体集成电路快10~20倍,功耗小到四分之一。利用约瑟夫逊结可构成各种逻辑、触发器和存储器等电路。 超导微处理机及其阵列机在军事方面有重要的用途。正在研制的超导微处理机包括有4000个逻辑门、32千位存储器,而体积只有25厘米3,周期时间仅为2.5纳秒,功耗为150毫瓦。 ![]() 全超导接收机 1975年A.H.西尔弗提出了全超导化的超外差接收机方案。它主要由三部分组成(图4)。①用超导体和半导体构成超导肖特基势垒二极管,把输入信号变成中频信号。②一组约瑟夫逊结参量放大器,把中频信号上变频获得增益,再用超导二极管变回到中频,完成二级约瑟夫逊低噪声中频放大。③电压控制的约瑟夫逊结与某一稳定的参考源n次谐波锁定,组成毫米波本机振荡器。这种接收机混频级的噪声大为降低,而约瑟夫逊结参量上变频器和超导混频器组成的中频放大器可使噪声低于1K,同时可得到9分贝的中频放大增益。这样,它就保证在100吉赫时整机的等效输入噪声温度的理论值为 20K。这种全超导化的超外差接收机在理论上可以获得极低的噪声温度,并能用于毫米波和亚毫米波。 |
随便看 |
百科全书收录78206条中英文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。